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Abstract	
	

	
	
METHCATHINONE	ANALOGUE	ACTIVITY	AT	THE	HUMAN	SEROTONIN	TRANSPORTER	
	
William	Drake	Varn,	Master	of	Science	in	Physiology	and	Biophysics	
	
A	thesis	submitted	for	the	partial	fulfillment	of	the	requirements	for	the	degree	of	Master	of	
Science	at	Virginia	Commonwealth	University.	
	
Virginia	Commonwealth	University	School	of	Medicine,	2016	
	
Director:	Louis	J.	De	Felice,	Professor,	Department	of	Physiology	and	Biophysics	
	
	
	
	 In	the	last	few	years,	there	has	been	continued	concern	about	synthetic	drug	abuse	

in	both	the	United	States	and	worldwide.		Small	adjustments	in	drug	compound	structure	

often	allow	synthetic	drug	makers	to	manufacture	a	legal	product	that	can	produce	the	

same	highs	as	illegal	counterparts.		Unfortunately,	this	is	happening	faster	than	the	

government	can	outlaw	the	drug	compounds,	and	a	wide	variety	of	synthetics	are	now	

appearing	on	the	street.		This	study	evaluated	the	effects	on	the	human	serotonin	

transporter	of	six	different	4-para	substituted	methcathinone	compounds.		Using	a	Xenopus	

oocyte	model,	the	efficacy	of	each	MCAT	analogue	at	hSERT	was	calculated	by	applying	the	

Hill	equation	to	the	oocyte	data.		This	study	suggests	that	volume,	size,	and	steric	bulk	of	

the	compound	may	generally	influence	efficacy	at	hSERT	in	a	direct	manner,	but	that	other	

factors,	like	lipophilicity,	may	also	play	an	important	role	in	potency	at	the	transporter.
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Introduction	
	
	

1.1 Solute	Carrier	6	Family	(SLC6),	Monoamine	Transporters	

	

Neurological	chemical	substances	called	neurotransmitters	are	stored	in	neurons	

and	can	be	released	into	the	neural	synapse.		Neurotransmitters	cause	a	myriad	of	effects	in	

the	adjacent	neurons	and	in	the	presynaptic	neuron.		These	electrochemical	events	involve	

neurotransmitters	moving	through	transporters	or	binding	to	receptor	sites,	further	

propagating	a	reaction	or	signal.		The	human	body	uses	many	different	chemical	

compounds	as	neurotransmitters,	including	a	group	named	the	monoamines.		The	three	

monoamines	-	dopamine,	serotonin,	and	norepinephrine	-	are	derived	from	aromatic	amino	

acids	and	contain	a	two-carbon	chain	attached	to	both	an	aromatic	ring	and	one	amino	

group	(Maisto,	Galizo,	Connors,	2007).		The	chemical	structure	of	both	dopamine	and	

serotonin	can	be	seen	in	Figure	1,	on	page	4.		The	monoamine	transporters	(MATs)	are	

responsible	for	the	uptake	and	reuptake	of	their	specific	monoamine	neurotransmitters	to	

maintain	homeostasis	within	the	body	(Manepalli	et	al.,	2012).	

	 The	monoamine	transporters	belong	to	the	solute	carrier	6	(SLC6)	gene	family.		

There	are	350	solute	carrier	transporters	divided	into	55	specific	families.		SLC6	

transporters	include	the	neurotransmitter	transporters	for	GABA	and	glycine	as	well	as	the	

dopamine,	serotonin,	and	norepinephrine	transporters.		The	polar	dipole	moments	of	the	

amine	group	make	monoamine	neurotransmitters	lipophobic	and	therefore	they	cannot	
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cross	lipid	bilayer	membranes	without	the	assistance	of	transporters.		The	MATs	derive	the	

energy	to	move	monoamines	against	a	gradient	by	coupling	the	electrochemical	potential	

difference,	or	cotransport,	of	extracellular	sodium	ions	and	possibly	chloride	ions.		They	are	

therefore	sodium	dependent	transporters	and	secondary	active	transporters.		More	

specifically,	MATs	and	all	SLC6	transporters	are	classified	as	neurotransmitter	sodium	

symporters	because	the	coupled	sodium	ions	move	in	the	same	direction,	outside	to	inside	

the	membrane,	as	the	monoamine	neurotransmitters	(Immadisetty	and	Madura,	2013).		

The	kinetics	of	neurotransmitter	transporters	follow	the	Michaelis-Menten	equation	with	

max	turnover	rate	between	1	and	20	substrate	molecules	per	second	and	EC50	(KM)	values	

in	the	low	micromolar	range	(Humphries,	Wall,	and	Rudnick,	1994).		The	function	of	

chloride	in	the	transport	event	is	still	unclear.		Many	still	believe	that	either	one	or	multiple	

chloride	ions	are	cotransported	with	the	neurotransmitter	substrate	and	sodium	ions	

(Humphries,	Wall,	and	Rudnick,	1994),	but	there	is	no	direct	evidence	to	prove	this	theory.		

Chloride	has	been	proven	necessary	for	serotonin	molecule	transport	through	hSERT,	but	it	

may	simply	be	binding	at	an	allosteric	site	and	not	actually	transported	across	the	

membrane	with	sodium	and	serotonin	(De	Felice,	2016).		More	future	experiments	are	

needed	to	truly	understand	chloride’s	distinct	role	at	the	monoamine	transporters.	

	 Neurotransmitter	transporters,	including	MATs,	maintain	neurotransmitter	

homeostasis	in	neurons	by	uptake	of	neurotransmitter	into	postsynaptic	neurons	or	

through	reuptake	back	into	the	presynaptic	neuron.		The	amount,	or	density,	of	

transporters	in	the	membrane	can	be	regulated	by	the	cell	through	up	and	down-

regulation.		Adding	or	removing	transporters	may	modulate	the	rate	at	which	

neurotransmitters	are	removed	from	the	synapse	allowing	the	cell	to	control	neuronal	
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activity	directly.		For	this	reason,	the	MATs	have	been	and	continue	to	be	drug	targets	for	

treatment	of	many	diseases	and	addictions	(Hediger	et	al.,	2003).	

	 All	monoamine	neurotransmitter	transporters	share	the	same	unique	basic	

structure.		Molecular	cloning	suggests	that	on	average	approximately	40%	of	the	amino	

acid	structure	belongs	to	all	neurotransmitter	transporters.		The	human	dopamine	and	

serotonin	transporters	have	one	single	isoform	consisting	of	617	and	630	amino	acids,	

respectively,	in	12	transmembrane	helices.		Both	transporters	contain	intracellular	N-	and	

C-termini,	a	glycosylated	loop	between	transmembrane	helices	III	and	IV,	and	a	pair	of	Cys	

residues	within	extracellular	loop	2	forming	a	N-linked	glycosylation	site	and	an	intraloop	

disulfide	bridge	(Guastella	et	al.,	1990).		Due	to	instability,	quantity,	and	purity	difficulties,	

protein	crystallization	of	SLC6	transporters	has	been	difficult	(Immadisetty	and	Madura,	

2013)	and	some	prokaryotic	transporter	proteins	are	more	stable.		The	most	important	of	

these	prokaryote	transporters	is	the	leucine	transporter	(LeuT)	because	it	has	shown	vast	

functional	resemblance	and	sequence	homology	to	SLC6	transporters.	(Yamashita	et	al.	

2005).		Recently,	X-ray	crystallography	of	the	human	serotonin	transporter	bound	to	two	

seperate	antidepressants	was	published	(Coleman,	Green,	and	Gouaux,	2016).		Their	

experiments	identified	the	central	binding	site	between	helices	1,	3,	6,	8,	and	10.		An	

allosteric	site	was	shown	to	modulate	ligand	binding	at	the	central	site	(Coleman,	Green,	

and	Gouaux,	2016).		Due	to	the	novelty	of	these	findings	and	the	vast	amount	of	research	

performed	previously	on	the	leucine	transporter,	further	discussion	of	transporter	

structure	and	function	will	focus	on	LeuT.	
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Figure	1.1	:	The	chemical	structure	of	the	SLC6	family	monoamines	dopamine	and	

serotonin	along	with	an	illustrated	representation	of	a	monoamine	transporter.		The	

illustration	also	depicts	the	number	of	ions	thought	to	travel	across	the	membrane	with	the	

monoamines.		It	is	important	to	note	that	the	role	of	the	chloride	ion	is	still	unclear,	and	Cl-	

may	not	actually	be	transported	across	the	membrane	(De	Felice,	2016).		(Above	figure	

borrowed	from	SCL6	Neurotransmitter	Transporters:	Structure,	Function,	and	Regulation	by	

Kristensen	et	al.,	2011.)	
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1.2	The	Leucine	Transporter,	Structure	and	Relevance	to	SLC6	Family	

	

	 The	thermophile	bacteria	Aquifex	aeolicus	possess	the	leucine	transporter,	and	LeuT	

shares	20-25%	sequence	identity	with	the	MATs	(Immadisetty	and	Madura,	2013).		Its	

resemblance	has	been	extensively	verified	and	structures	of	LeuT	have	been	elucidated,	

with	and	without	substrates	and	with	competitive	and	noncompetitive	inhibitors.		X-ray	

crystallography	of	LeuT	confirmed	the	12	transmembrane	helices	with	internal	N-	and	C-

terminus	structure	and	confirmed	individual	properties	of	each	transmembrane	protein’s	

intracellular	and	extracellular	half.		For	example,	the	large	second	extracellular	loop	and	its	

multiple	glycosylation	sites	seem	to	play	a	role	in	synthesis,	trafficking,	and	stability	(Hahn	

and	Blakely,	2007).		LeuT	also	established	the	cylindrical	shape	of	the	helical	protein	

bundle	with	transmembrane	protein	1	(TM1),	TM3,	TM6,	and	TM8	making	up	the	inner	

ring,	forming	a	distinct	central	binding	pocket	(S1)	for	substrates.		TM1,	TM3,	TM6,	and	

TM10	contain	side	chains	that	interact	in	a	network	to	block	the	S1	binding	pocket	from	

external	media.			The	intracellular	halves	of	TM1,	TM6,	and	TM8	form	the	second	half	of	the	

gating	region;	a	large	tight	protein	network	covering	the	S1	binding	site	on	the	intracellular	

side.		In	order	for	a	substrate	to	bind,	these	protein	regions	must	undergo	structural	

rearrangement	in	a	sequence	of	conformational	states.		These	regions	are	consistent	

throughout	the	SLC6	family,	except	for	one	glutamate	replacing	Asp404	in	the	serotonin	

transporter	(Yamashita	et	al.,	2005;	Kristensen	et	al.	2011).	

	 The	overall	asymmetric	LeuT	structure,	called	the	“5+5	inverted	repeat”,	is	not	

consistent	with	the	structure	of	SLC6	transporters,	but	it	is	believed	that	LeuT’s	central	

binding	site	(S1)	and	sodium	ion	binding	sites	are	equivalent	to	the	corresponding	sites	



www.manaraa.com

	 6	

within	SLC6	transporters;	the	four-helix	bundle	comprising	these	sites	shares	55-67%	

sequence	similarity.		This	discovery	established	the	LeuT	homology	model	for	

neutrotransmitter	transporters	and	has	allowed	reputable	3D	models	of	human	DAT	and	

SERT.		The	model	does	retain	limitations;	while	the	inner	and	outer	ring	regions	are	overall	

analogous,	the	intra-	and	extra-cellular	loop	regions	and	the	short	N-	and	C-	termini	of	

LeuT	differ	from	the	SLC6	counterparts	(Yamashita	et	al.,	2005;	Kristensen	et	al.	2011).	

	 The	S1	pocket	consists	of	two	distinct	regions.		First,	TM1	and	TM6	form	a	polar	

region	that	can	contain	the	charged	α-amino	and	α-carboxylate	groups	of	the	amino	acid	

substrate.		These	alpha	groups	form	hydrogen	bonds	with	available	amide	groups	on	TM1	

and	TM6.		The	second	section	of	the	S1	pocket	consists	of	hydrophobic	sections	of	TM1,	

TM3,	TM6,	and	TM8	in	order	to	accommodate	a	substrate’s	aliphatic	hydrophobic	side	

chains.		This	second	portion	plays	a	large	role	in	binding	specificity	of	substrates	in	S1.	

Molecular	dynamics	have	suggested	the	presence	of	another	binding	site	in	LeuT,	

the	S2	binding	site,	within	the	solvent-accessible	path	from	extracellular	media	to	the	S1	

site	and	separated	by	an	extracellular	gate.		Various	LeuT	inhibitors	have	been	found	

bound	in	the	S2	site,	preventing	necessary	conformational	changes	allowing	substrate	

movement	to	the	intracellular	side.		It	has	thus	been	proposed	that	occupation,	or	possibly	

a	lack	there	of,	in	the	S2	site	is	required	to	initiate	conformational	movement	required	for	

substrate	to	enter	the	cell.		The	S2	site	control	of	S1	alludes	to	a	possible	SLC6	transporter	

inhibitor	mechanism	of	action	(Singh	et	al.	2007;	Yamashita	et	al.	2005).		The	recently	

published	hSERT	crystal	structure	studies	by	Coleman,	Green,	and	Gouaux	confirms	the	

notion	of	an	allosteric	site	in	hSERT.		Using	electron	density	mapping,	the	studies	showed	

citalopram	bound	in	an	allosteric	site	that	is	distinct	in	hSERT	and	not	present	in	hDAT.		
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Mutations	to	this	allosteric	site	resulted	in	markedly	decreased	potency	of	citalopram	

binding,	but	the	resulting	effects	on	substrate	transport	are	still	unclear	(Coleman,	Green,	

and	Goax,	2016).			A	structural	representation	of	S1	and	S2	can	be	seen	in	Figure	2,	on	page	

9.			

	 In	addition	to	the	S1	and	S2	binding	sites,	there	are	also	two	sodium	ion-binding	

sites	in	LeuT.		The	two	sites,	Na1	and	Na2,	are	both	located	within	the	S1	binding	pocket.			

The	sodium	bound	in	the	N1	site	interacts	with	the	α-carboxyl	group	of	the	transporter	

substrate	and	this	is	believed	to	be	the	first	step	towards	translocation	of	both	into	the	cell.		

Both	Na1	and	Na2	serve	to	stabilize	TM1	and	TM6	in	the	presence	of	substrate	by	

organization	with	side-chain	oxygens	and	backbone	carbonyls,	five	for	Na1	and	eight	for	

Na2	as	can	be	seen	in	Figure	3.		The	structure	of	SERT	illustrates	the	conservation	of	

residues	surrounding	the	sodium	ion	binding	sites	throughout	the	SLC6	transporter	family,	

because	an	Asp	in	monoamine	transporters	exchanged	for	Gly24	in	LeuT	is	the	only	

structural	difference	between	LeuT,	DAT	and	SERT.		It	is	less	clear	whether	or	not	the	Na2	

site	is	structurally	and	functionally	identical	to	LeuT	and	the	SLC6	transporters.		Five	

different	residues	make	up	Na2	in	LeuT,	of	which	one	is	identical	and	three	are	very	similar	

in	the	SLC6	family.		Multiple	theories	have	been	proposed	about	the	roles	of	both	the	Na1	

and	Na2,	but	some	human	neurotransmitters	only	translocate	one	sodium	ion	and	others	

two.		Only	speculations	can	be	made	to	the	exact	function	of	Na1	and	Na2	due	to	

discrepancies	across	the	SLC6	family	regarding	these	sites,	and	a	current	lack	of	functional	

data	(Singh	et	al.	2007;	Kristensen	et	al.	2011).	
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Figure	1.2	(right)	:	A	computer	

generated	illustration	of	the	S1	and	S2	

binding	pockets	in	LeuT.		The	different	

transmembrane	domains	that	

construct	the	binding	pockets	can	also	

be	seen.		The	yellow	spheres	

represent	a	leucine	within	the	main	

substrate	binding	pocket.		

(Above	figure	borrowed	from	

Kristensen	et	al.,	2011.)	

	

	

	

	

	

	

	

	

	

Figure	1.3	:	

The	leucine	transporter’s	Na1	and	Na2,	shown	in	purple,	stabilize	TM1	and	TM6	by	

organization	with	side-chain	oxygens	and	backbone	carbonyls;	five	for	Na1	and	eight	for	

Na2.	(Figure	3	also	borrowed	from	Kristensen	et	al.	2011).	
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1.3	MAT	Mechanism	of	Action	-	Alternating	Access	Model	

	

	 The	first	model	of	transport	mechanism	was	proposed	in	the	late	1950s,	then	was	

adjusted	and	named	the	“alternating	access”	model	about	a	decade	later.		Supporters	of	the	

alternating	access	theory	believe	that	secondary	active	transporters	have	three	main	

conformational	states.		First,	the	substrate	binding	site	is	exposed	to	the	external	media.		

Next,	the	binding	site	is	internalized	and	blocked	from	all	media.		Finally,	the	binding	site	is	

exposed	to	the	internal	media.		This	model	suggests	impermeable	gates,	or	a	gating	like	

action,	on	the	external	and	internal	sides	that	can	be	closed	as	the	transporter	transitions	

through	conformational	states	to	move	substrate	into	or	out	of	the	cell	(Jardetzky,	1966;	

Mitchell,	1990).		Early	research	indicated	multiple	TM	regions	and	residues	undergo	

conformational	change	and	move	positions,	possibly	substantiating	the	alternate	access	

model	and	making	it	the	widely	accepted	basis	for	transport	mechanism.		The	discovery	of	

LeuT’s	stable	nature	for	testing,	structure,	and	relationship	to	the	SCL6	family	and	

monoamine	transporters	has	begun	offering	glimpses	of	various	transporter	

conformations.		LeuT	has	been	shown	in	the	outward-facing	conformation	but	not	the	

inward-facing	conformation,	though	other	prokaryotic	transporters	sharing	LeuT’s	‘5+5	

inverted	repeat’	folding	have	been	crystalized	in	both.		For	example,	a	sodium-

benzylhydantoin	symporter	(Mhp1),	a	carnitine-butyrobetaine	aintiporter	(CaiT),	an	

arginine-agmatine	symporter	(AdiC),	an	H+-coupled	amino	acid	symporter	(ApcT),	and	a	

sodium-galactose	symporter	(vSGLT)	all	share	the	5+5	repeat	and	have	been	crystalized	in	

multiple	conformations.		All	five	hail	from	five	different	transporter	families,	though	this	

apparent	conservation	of	structure	across	transporters	has	corroborated	the	theory	that	
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the	related	SCL6	family	of	transporters	operates	by	the	same	mechanisms	(Forest	and	

Rudnick,	2009;	Kristensen	et	al.	2011).	

	 Multiple	models	of	the	alternating	access	transport	theory	have	been	proposed,	and	

each	begins	with	the	initial	step	of	substrate	binding	in	the	S1	site.		Experiments	with	LeuT	

and	competitive	inhibitors	indicate	that	once	the	substrate	has	entered	through	an	

extracellular	permeation	pathway	and	bound	to	its	proper	site,	a	transition	begins	

(Malinauskaite	et	al.,	2014;	Stolzenberg	et	al.,	2015).		The	substrate	becomes	completely	

occluded	in	an	intermediate	step,	thanks	to	external	portions	of	TM1,	TM3,	TM6,	TM8,	TM2,	

and	TM10	rearranging	to	form	the	extracellular	gate.		Next,	a	pathway	forms	between	the	

inner	ring	portions	of	TM1,	TM6,	and	TM8	so	that	the	substrate	can	be	released	and	diffuse	

into	the	cell.		The	second	step,	transitioning	to	the	intracellular	pathway,	requires	much	

more	movement	and	translocation	than	the	first	step	of	just	closing	the	extracellular	gate.		

How	exactly	this	happens	is	unclear,	but	one	theory	states	that	TM1	and	TM6	hinge	in	the	

middle,	allowing	their	unwound	end	segments	to	block	extracellular	and	intracellular	

media	when	appropriate	(Malinauskaite	et	al.,	2014;	Stolzenberg	et	al.,	2015;	Billesbølle	et	

al.,	2015).		A	contrasting	model	proposes	a	more	inflexible	rocking	motion	between	the	

outward	and	inward	conformations	due	to	TM1	and	TM6	interacting	with	TM2	and	TM7	in	

an	inelastic	fashion.			And	still,	another	speculation	involves	TM1	and	TM6	rearranging	

counterclockwise	with	TM8.		While	there	has	been	a	recent	surge	in	research	on	SCL6	

transporters	and	monoamine	transporters,	a	deficiency	in	protein	dynamic	experimental	

data	still	presents	issues	correlating	proposed	structural	mechanisms	with	actual	

transporter	function	(Beuming	et	al.,	2006).	
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Figure	1.4	:	A	visual	representation	of	the	four	possible	conformations	involved	in	the	

alternating	access	model	of	substrate	transport.	Each	conformation	can	change	in	one	of	

two	ways,	either	releasing	the	substrate,	or	holding	it	within	the	binding	pocket	–	one	

theory	of	how	the	transporters	employ	a	gating	mechanism	(Figure	4	borrowed	with	much	

thanks	from	SCL6	Neurotransmitter	Transporters:	Structure,	Function,	and	Regulation	by	

Kristensen	et	al.,	2011).		It	is	important	to	note	that	this	model	of	transport	would	not	

result	in	the	currents	seen	in	TEVC,	and	therefore	there	must	be	another	mechanism	of	

transport	acting	instead,	or	along	side,	the	alternating	access	model.	

	

	



www.manaraa.com

	12	

1.4	MAT	Mechanism	of	Action	–	Transporter	Channels	

	

	 As	data	and	analysis	of	transporter	action	have	improved,	the	partition	between	

active	transporters	and	passive	ion	channels	has	begun	to	get	cloudier.		After	the	discovery	

of	co-transporters,	many	believed	that	electrodiffusion	was	not	a	sufficient	mechanism	for	

concentrating	against	a	gradient.		These	researchers	and	scientists	thus	presented	

transporters	in	a	more	enzymatic	scheme,	based	on	radiolabeled	uptake	experiments,	

giving	rise	to	the	alternating	access	model.		The	disagreeing	group	stuck	to	electrical	

measures	and	experiments,	creating	a	contrasting	theory	of	electrodiffusion	governed	

channels	as	a	mechanism	for	transporters.		More	recently	developed	experimental	

methods,	such	as	single	channel	patch	clamp	and	the	cloning	of	co-transporters,	have	

revealed	that	the	true	mechanism	of	transporters	might	be	a	combination	of	both	ideas	(De	

Felice,	2004).			

	 Dr.	L.	De	Felice	has	proposed	that	co-transporters	might	actively	follow	the	enzyme	

theory,	but	under	the	correct	conditions	the	transporter	may	open	into	a	passive	channel	

mode.		Co-transporters	could	act	as	channels	while	using	flux	coupling	to	drive	secondary	

activity.		Flux	coupling	takes	place	when	a	channel	is	too	narrow	to	allow	the	substrate	and	

ion	to	pass	each	other.		If	the	ion	flow	down	its	gradient	is	dominant	enough,	it	can	force	

the	substrate	against	its	own	gradient	(De	Felice,	2004).		Thanks	to	convincing	experiments	

beginning	in	the	1990s,	the	presence	of	a	channel	in	transporters	is	well	documented,	

though	the	purpose	and	function	of	the	channel	is	still	unclear.	

	 In	a	2007	review	paper,	De	Felice	and	Goswami	made	a	compelling	argument	for	the	

presence	of	a	channel	in	monoamine	transporters.		Dopamine	and	serotonin	transporters	
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generate	a	current	because	the	membrane	crossing	substrates	and	sodium	carry	a	positive	

charge,	which	is	only	partially	offset	by	chloride’s	negative	charge.		The	movement	of	all	

three	across	the	membrane	creates	a	current	that	can	be	quantified	by	the	equation:	

I	=	Nνq	

in	which	“I”	is	the	current,	“N”	is	the	number	of	transporters,	“ν”	is	the	cycle	rate,	and	“q”	is	

the	net	charge	transferred	with	each	cycle	of	the	transporter.	A	single	5HT	substrate	

molecule	has	a	+1	charge	for	the	equation	above	(1	5HT+,	1	Na+,	1	Cl-).		If	one	million	

transporters	operate	in	an	alternating	access	like	fashion	at	one	cycle	per	second	with	a	

transfer	of	+1	charge	for	each	cycle,	0.16	pico-amps	of	current	would	be	generated	per	

second	(De	Felice	and	Goswami,	2007).		Flash	photolysis	and	whole	cell	patch	clamp	

techniques	have	shown	that	the	total	current	across	the	membrane	due	to	serotonin	

transporters	alone	falls	in	the	hundreds	of	pico-amps	(Bruns	et	al.,	1993).		This	large	

discrepancy	clearly	points	to	another	mechanism	taking	place	and	a	transporter	channel	

function	could	create	the	much	greater	current.	
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1.5		Monoamine	Transporters	&	Drugs	

	

	 Despite	our	lack	of	molecular	understanding	of	MATs’	functional	mechanisms,	drugs	

have	been	used	for	years	to	manipulate	these	channels	and	neural	activity.		Currently	there	

are	more	than	30	drug	compounds	available	that	affect	MATs.		Many	more	have	been	

developed	but	not	made	it	to	market	due	to	lack	of	efficacy	or	side	effect	consequences.	

	 Two	sets	of	drugs,	the	monoamine	oxidase	inhibitors	(MAOIs)	and	tricyclic	

antidepressants	(TCAs),	were	discovered	and	used	to	treat	patients	as	far	back	as	the	

1950s.		These	drugs	are	not	specific	and	modulate	multiple	neurotransmitters.		Neither	are	

first	line	medications	today	due	to	a	myriad	of	side	effects.		Like	the	name	suggests,	the	

MAOIs	inhibit	the	monoamine	oxidase	enzyme,	which	breaks	down	monoamines	in	the	

synaptic	cleft.		MAOIs	affect	dopamine,	serotonin,	and	norepinephrine.		A	limited	tyramine	

diet	is	required,	or	MAOIs	can	cause	hypertensive	crisis.		The	tricyclic	antidepressants	were	

discovered	a	few	years	after	the	MAOIs	and	were	then	implemented	as	first	line	treatment	

for	many	years.		TCAs	primarily	block	reuptake	of	5-HT	and	norepinephrine,	but	also	block	

muscarinic	M1	receptors,	histamine	H1,	and	alpha-adrenergic	receptors.		This	lack	of	

specificity	causes	dose	related	side	effects	like	cardiac	effects,	anticholinergic	and	

antihistamine	effects,	decreased	seizure	threshold,	sexual	disfunction,	diaphoresis,	and	

tremor	(Hirsch	and	Birnbaum,	2015	[1]).		Despite	the	wide	range	of	possible	adverse	

effects,	many	people	still	safely	use	tricyclics	today.	

	 Currently,	selective	serotonin	reuptake	inhibitors	(SSRIs)	are	more	typically	given	

to	treat	depression	or	other	psychiatric	disorders.		The	FDA	approved	fluoxetine	in	1987	as	

the	first	SSRI	safe	for	treatment	and	there	are	now	6	different	commonly	prescribed	SSRIs.		
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Besides	depression,	SSRIs	can	alleviate	panic	disorders,	obsessive-compulsive	disorders,	

PTSD,	general	and	social	anxiety,	many	eating	disorders,	and	premenstrual	dysphoric	

disorder.		It	is	believed	that	SSRIs	inhibit	the	cytochrome	P450	hepatic	enzyme	which	

metabolizes	many	substances,	and	therefore	adverse	drug	interactions	are	possible	when	

taking	SSRIs.		SSRIs	reach	peak	plasma	levels	within	eight	hours	of	being	absorbed	by	the	

GI	tract	and	are	thought	to	reduce	5-HT	reuptake	activity	by	60	to	80	percent.		

Unfortunately,	the	full	therapeutic	effects	of	SSRIs	are	not	typically	realized	for	3	to	8	

weeks	after	initial	consumption.		Many	attribute	this	to	SSRIs’	downstream	effects	and	slow	

increase	in	neuroprotective	proteins	(Hirsch	and	Birbaum,	2015	[2]).	

	 More	recent	drug	discovery	has	produced	a	selective	dopamine	reuptake	inhibitor	

called	bupropion,	dual-acting	inhibitors	like	selective	serotonin	and	norepinephrine	

reuptake	inhibitors	(SNRIs,	ex:	duloxetine),	dopamine	and	norepinephrine	inhibitors	(ex:	

nomifensine),	and	compounds	that	inhibit	all	three	monoamine	transporters	(ex:	

tesofensine).		Cocaine	is	also	a	nonselective	reuptake	inhibitor	at	all	three	transporters.		

Cocaine	is	most	commonly	associated	with	dopamine	because	it	is	more	efficacious	at	

hDAT	than	hSERT,	and	because	it	is	believed	that	DAT	causes	addiction	properties	(Carroll,	

2003;	Jin	et	al.,	2008).		Most	illegal	drugs	elicit	some	degree	of	modulation	at	each	

monoamine	transporter.		The	relevant	drugs	are	discussed	below	in	the	individual	DAT	and	

SERT	chapters.	
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1.6		Human	Serotonin	Transporters	(hSERT)	

	

	 Serotonin,	or	5-hydroxytryptamine	(5-HT),	transporters	are	best	known	for	their	

effects	in	the	central	nervous	system,	but	these	transporters	are	also	located	in	the	enteric	

nervous	system,	in	specialized	neuronal	cells,	and	in	placental	syncitiotrophoblasts	

(Blakely	et	al.,	1998).		Outside	of	the	CNS,	serotonin	plays	a	role	in	regulating	

cardiovascular	function,	bowel	motility,	energy	balance	and	food	intake,	endocrine	

function,	and	some	genitourinary	effects.		At	least	15	different	serotonin	transporters	have	

been	identified	and	grouped	into	seven	families	based	on	signaling	mechanisms.		This	

plethora	of	receptors	in	various	locations	explains	why	sometimes	side	affects	like	

diabetes,	metabolic	syndromes,	and	valvular	heart	disease	can	occur	with	serotonergic	

drugs	(Berger	et	al.,	2009).	

	 All	brain	regions	express	multiple	serotonin	receptors,	and	even	individual	neurons	

can	express	multiple	5-HT	receptors.		Serotonin,	an	indolamine	neurotransmitter	released	

from	neurons	originating	in	the	raphe	nuclei,	modifies	anger,	aggression,	appetite,	

attention,	mood,	perception,	reward,	and	sexuality.		Each	serotonin	receptor	subtype	can	

affect	one	or	many	different	brain	processes	(Berger	et	al.,	2009).			5-HT	plays	a	role	in	

many	related	mental	illnesses	including	depression,	obsessive-compulsive	disorders,	

anxiety,	eating	disorders,	autism,	schizophrenia,	and	alcohol	abuse.		Many	attempts	have	

been	made	to	link	SERT,	or	a	lack	of	5-HT	and	SERT,	to	impulsivity	and	the	diseases	listed	

above.		At	this	time	no	conclusive	data	has	been	shown	(Hahn	and	Blakely,	2007).			

	 The	human	serotonin	transporter	is	encoded	by	the	SCL6A4	gene.		SERT	knockout	

mice	have	been	engineered	by	altering	this	gene.		The	knockout	mice	display	an	increase	in	



www.manaraa.com

	17	

extracellular	5-HT	and	a	decrease	in	5-HT	tissue	content,	despite	the	overall	level	of	5-HT	

biosynthesis	remaining	constant	(Bengel	et	al.,	1998).		These	results	suggest	that	the	

transporter	is,	in	fact,	the	main	mechanism	by	which	the	body	removes	released	5-HT	and	

by	which	cells	reclaim	5-HT	for	intracellular	stores.		These	results	have	also	been	seen	

when	5-HT	reuptake	inhibitors	are	administered	during	early	development,	linking	

development,	5-HT	homeostasis,	and	adult	anxiety-related	behavior	(Bengel	et	al.,	1998).	

	 Variations	in	the	promoter	region,	located	1	kilobase	upstream,	modify	human	SERT	

expression.		There	are	two	polymorphisms	defined	by	the	presence	or	absence	of	a	44-base	

pair	group	in	the	promoter	region:	the	short	allele	and	the	long	allele.		Two	single-

nucleotide	polymorphisms	have	been	shown	to	slightly	modify	transcriptional	activity,	but	

transcriptional	activity	is	mainly	determined	by	short	versus	long	allele,	with	the	short	

having	a	lower	transcriptional	activity.		Some	data	suggest	that	humans	who	possess	the	

short	allele	are	more	predisposed	to	depression	in	response	to	stress,	and	are	more	likely	

to	demonstrate	neuropsychiatric	conditions	[ex:	autism,	OCD,	eating	disorders]	and	

anxiety-related	personality	traits	(Kristensen	et	al,	2011;	Hahn	and	Blakely,	2007).		Other	

preliminary	data	suggest	that	the	short	allele	limits	the	affects	of	selective	serotonin	

reuptake	inhibitors	(SSRIs)	in	depressed	patients	due	to	the	lack	of	SERT.		The	longer	allele	

causes	proper	transcription	of	SERT,	but	may	predispose	to	hypertension	through	an	

unknown	mechanism	of	SERT	located	on	blood	platelet	cells	(Hahn	and	Blakely,	2007;	

Eddahibi	et	al.,	2001).			

In	addition	to	the	long	and	short	allele,	other	variants	have	been	found.		The	I425V	

variant	is	associated	with	obsessive-compulsive	personality	disorder	and,	interestingly,	

increases	uptake	compared	to	wild-type.		It	has	been	proposed	that	either	altered	surface	
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expression	or	enhanced	intrinsic	transport	capacity	causes	this	difference	in	uptake	ability	

(Kilic	et	al.,	2003;	Prasad	et	al.,	2005).		Five	different	short-nucleotide	polymorphisms	

(SNPs)	have	been	acknowledged	in	relation	to	autism.		These	SNPs	cause	mutations	in	the	

coding	region	of	the	SERT	gene	and,	similar	to	the	I425V	variant,	result	in	an	increase	in	

SERT	expression	and	uptake	levels.		A	third	variant,	the	K201N	variant,	has	increased	

glycoslylation	and	has	been	shown	to	increase	SERT	expression	levels	by	thirty	percent	

(Kristensen	et	al.,	2011;	Rasmussen	et	al.,	2009).			
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Mechanism	

	

	
Drugs	Involved	

	
Increases	Serotonin	Formation	
	

	
Tryptophan	

	
Monoamine	Transporter	Substrates	
	

	
Amphetamines	(including	
dextroamphetamine,	methamphetamine)	
	
MDMA	(Ecstasy)	
	
Amphetamine	derivatives	(including	
fenfluramine,	dexfenfluramine,	
phentermine)	
	
Levodopa,	Carbidopa-levodopa	(indirectly)	
	

	
Monoamine	Transporter	Inhibitors	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Cocaine	
	
Selective	Serotonin	Reuptake	Inhibitors	
(SSRIs)	(including	citalopram,	
escitalopram,	fluoxetine,	fluvoxamine,	
paroxetine,	sertraline)	
	
Serotonin-Norepinephrine	Reuptake	
Inhibitors	(SNRIs)	(including	
desvenlafaxine,	duloxetine,	milnacipran,	
venlafaxine)	
	
Dopamine-norepinephrine	reuptake	
inhibitors	(including	bupropion)	
	
Serotonin	modulators	(including	
nefazodone,	trazodone,	vilazodone)	
	
Tricyclic	Antidepressants	(TCAs)	(including	
amitriptyline,	amoxapine,	clomipramine,	
desipramine,	doxepin,	imipramine,	
maprotiline,	nortriptyline,	protriptyline,	
trimipramine)	
	
St.	John’s	Wort	(Hypericum	perforatum)	
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Monoamine	Transporter	Inhibitors	
(Continued)	

5-HT3	receptor	antagonists	(dolasetron,	
granisetron,	ondansetron,	palonosetron)	
	
Valproate	
	
Sibutramine	
	

	
Inhibits	Serotonin	Metabolism	(inhibits	
monoamine	oxidase	activity)	
	

	
Monoamine	oxidase	inhibitors	(MAOIs)	
(including	phenelzine,	tranylcypromine,	
isocarboxazid,	moclobemide,	selegiline,	
rasagiline,	linezolid,	tedizolid,	methylene	
blue,	procarbazine,	Syrian	rue)	
	

	
	
Direct	Serotonin	Agonist	
	

Lorcaserin	
	
Buspirone	
	
Triptans	(including	sumatriptan,	rizatriptan,	
others)	
	
Ergot	derivatives	(including	ergotamine,	
methylergonovine)	
	
Fentanyl	
	
Lysergic	acid	diethylamide	(LSD)	

	
Increases	Sensitivity	of	Postsynaptic	
Serotonin	Receptor	
	

	
Lithium	

	
	
Table	1.5	:	List	of	mechanisms	affecting	serotonin	and	SERT,	and	also	the	drugs	that	elicit	
each	mechanism.	
(adapted	from	UpToDate.com	“Examples	of	drugs	that	can	precipitate	serotonin	syndrome”	
http://www.uptodate.com/contents/image?imageKey=EM/64604&topicKey=PSYCH%2F1
4675&source=outline_link&search=ssri&selectedTitle=1~150&utdPopup=true	)	
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1.7	Xenopus	Oocytes	and	RNA	Expression	

	

	 The	Xenopus	laevis,	or	African	clawed	frog,	originally	populated	areas	south	of	the	

Sahara	desert	along	the	African	Rift	Valley,	but	today	are	found	all	over	the	world	in	

stagnant	pools	and	streams.		This	species	of	frog	can	live	up	to	fifteen	years	and	is	sexually	

mature	ten	to	twelve	months	after	birth.		Each	female	can	mate	up	to	four	times	a	year,	and	

mating	is	most	common	in	spring	and	summer.		They	lay	between	five	hundred	and	two	

thousand	spherical	eggs	at	once,	each	0.04	inch	(0.1	cm)	in	diameter.		Each	female	can	

produce	and	lay	up	to	8,000	eggs	a	year,	making	the	frogs	and	their	eggs	a	viable,	

inexpensive,	and	efficient	research	model	for	many	experiments	(nationalzoo.si.edu).	

	 The	Xenopus	oocyte’s	large	size	makes	them	easy	to	handle	in	electrophysiology	

models	under	a	microscope.		The	oocyte	possesses	a	resting	membrane	potential	between		

-50	and	-60	mV,	due	mainly	to	the	permeability	of	K+	ions	(nationalzoo.si.edu).		After	

fertilization	occurs,	the	oocytes	prepare	for	the	upcoming	developmental	stages	by	

producing	and	storing	organelles,	enzymes,	and	proteins.		Electrophysiology	takes	

advantage	by	influencing	the	oocyte	to	produce	choice	proteins	of	interest.			

	 Human	RNA	cannot	simply	be	injected	into	the	oocyte	and	be	expressed.		The	RNA	

template	must	first	be	placed	into	a	Xenopus	oocyte	compatible	vector,	so	the	cDNA	of	

SERT	and	DAT	was	subcloned	into	a	pOTV	vector,	or	Oocyte	Transcription	Vector.		

Afterward,	mRNA	can	be	prepared	in	vitro	from	the	cDNA	and	this	RNA	can	be	injected	into	

the	oocyte.		The	human	protein	located	within	the	pOTV	will	now	be	synthesized,	

assembled,	and	targeted	to	the	oocyte	membrane	(Miller	and	Zhou,	2000).		Typically,	
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between	107	–	1010	new	proteins	will	be	expressed	in	each	cell’s	membrane	(Sigel,	2010).		

A	summary	of	the	oocyte	process	can	be	seen	in	the	figure	below.	

	

	

	

	

	

	

Figure	1.6	:	A	summary	of	the	steps	necessary	to	express	membrane	proteins	in	Xenopus	

oocytes,	beginning	with	nucleic	acid	extraction	from	tissue.	It	is	worth	noting	that	in	our	

synthetic	cathinone	experiments	human	MAT	RNA	was	injected	into	the	vegetal	

hemisphere	only,	though	microinjection	into	the	animal	hemisphere	is	also	possible,	as	

shown	(Figure	borrowed	from	E.	Sigel’s		‘Microinjection	into	Xenopus	Oocytes’,	2010).	
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1.8	Two-Electrode	Voltage	Clamp	

	

	 The	most	common	electrophysiological	technique	used	with	exogenous	mRNA	

expression	in	Xenopus	oocytes	is	two-electrode	voltage	clamp,	or	TEVC.		TEVC	has	provided	

the	majority	of	our	ion	channel	property	data	and	understanding.		Two-electrode	voltage	

clamp	permits	the	study	of	ion	channels,	or	other	electrogenic	membrane	proteins,	by	

controlling	the	oocyte	membrane	potential	(VM).		This	technique	can	be	used	with	voltage-

dependant	ion	channels,	or	with	ligand-gated	ion	channels.		In	our	case,	the	DAT	and	SERT	

transporters	are	ligand	gated	transporters	and	TEVC	tracks	the	electrical	potential	changes	

across	the	membrane	due	to	ion	and	substrate	[neurotransmitter	or	drug]	movement	

(Guan	et	al.,	2013).	

	 The	asymmetrical	ion	distribution	across	the	cell	membrane	causes	an	

electrochemical	gradient,	and	this	difference	gives	rise	to	the	membrane	potential.		This	

gradient	and	potential	are	due	to	a	host	of	ions,	each	of	which	demonstrate	varying	

permeability	dependent	upon	the	particular	environmental	conditions.		The	Goldman-

Hodgkin-Katz	equation	is	pertinent	to	this	research	because	it	describes	how	ion	

permeability	and	changes	in	the	permeability	change	the	overall	membrane	potential.		In	

order	to	use	the	equation	one	must	assume	that	there	is	free	diffusion	across	the	

membrane,	that	the	diffusion	coefficient	(DC)	remains	constant,	and	that	the	electrical	field	

within	the	membrane	remains	constant	(Bierwirtz	and	Schwarz,	2014).		If	these	conditions	

are	met,	the	Goldman-Hodgkin-Katz	equation	for	Na+,	K+,	and	Cl-	can	be	given	by:	

EGHK	=	(RT/F)	ln	[(PNA[Na]out	+	PK[K]out	+	PCl[Cl]in)	/	(PNa[Na]in	+	PK[K]in	+	PCl[Cl]out)]	
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where	R	is	the	universal	gas	constant,	T	is	the	absolute	temperature,	and	F	is	the	Faraday	

constant.			

	 The	opening	and	closing	of	ion	channels	govern	the	resistance	characteristics	of	the	

cell	membrane,	and	therefore	current-voltage	(IV)	properties	describe	functions	of	the	

transporters	in	the	membrane	(Bierwirtz	and	Schwarz,	2014).		Two-electrode	voltage	

clamp	employs	two	electrodes,	both	inserted	into	a	large	cell	with	low	resistance	(oocyte).			

The	first	electrode	injects	a	varying	current,	the	command	potential	(VC),	into	the	cell	

maintaining	a	desired	value;	in	this	case	it	maintains	the	cell’s	resting	membrane	potential	

(VM)	of	approximately	-60mV.		The	second	electrode,	the	potential	electrode,	measures	how	

much	current	must	be	injected	into	the	cell	to	keep	the	desired	value	(Guan	et	al.,	2013).		

Figure	6	below	further	displays	the	basic	theory	and	workings	of	TEVC.		
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Figure	1.7	:	Conventional	two-electrode	voltage	clamp	(TEVC)	on	an	oocyte	(borrowed	

from	Guan	et	al.,	2013).		A1	is	a	voltage	follower	with	high	input	impedance	and	low	

resistance	that	monitors	VM.		A1’s	output	equals	VM	and	is	measured	by	the	connected	

clamping	amplifier,	A2.		A2	compares	the	measured	VM	to	VC,	the	voltage	command	signal,	

which	is	applied	to	the	other	input	terminal.		ε	is	the	current	output	of	A2,	which	is	a	

current	proportional	to	the	difference	between	VM	and	VC.		This	current	flows	through	the	

current	electrode,	electrode	2,	and	into	the	cell.		VM	clamping	is	achieved	when	VM	nears	VC.		

The	current	passing	through	electrode	2	counterbalances	VM	deviations	and	is	therefore	

measured	as	the	membrane	current	(Guan	et	al.,	2013).	
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1.9	Cathinone,	Methcathinon,	and	Analogues	

	

	 An	underground	market	of	synthetic	psychoactive	substances	has	emerged	and	

thriven	within	the	last	decade.		The	Unites	States’	and	European	Union	countries’	laws	

prohibiting	conventional	illicit	drugs	drive	many	individuals	to	seek	other	legal	substances	

that	produce	the	same	effects.		These	new	synthetic	compounds	are	often	synthesized	by	

clandestine	chemists,	but	some	can	even	be	cooked	by	individuals	with	little	chemistry	

background.		When	made	correctly,	synthetics	elicit	the	desired	affects	but	they	also	are	

often	very	toxic	in	higher	doses.		For	example,	synthetic	cannabinoids	or	“spice”,	activate	

endocannabinoid	receptors	similar	to	cannabis,	and	synthetic	cathinones	or	“bath	salts”,	

activate	pathways	similar	to	cocaine	and	amphetamines.		When	taken	in	excess,	drugs	such	

as	these	can	cause	violent	behaviors	and	many	health	problems	including	hallucinations,	

agitation,	psychosis	and	death	(Baumann	et	al.,	2014).		Recently,	a	man	in	Florida	

attempted	to	cash	a	check	for	386	billion	dollars,	and	another	individual	turned	himself	in	

to	police	for	“murdering	his	imaginary	friend.”		While	these	two	stories	could	easily	be	

fabricated,	the	media	suggested	that	both	men	ingested	toxic	amounts	of	bath	salts	prior	to	

these	events.		True	or	not,	these	are	two	of	the	many	events	associated	with	bath	salt	

intoxication	pushing	governments	to	outlaw	known	forms	of	these	synthetic	drugs.		

Unfortunately,	each	new	ban	provokes	the	manufacture	of	similar	chemical	analogues	in	

hopes	of	legally	achieving	the	same	high.		

	 The	most	widely	publicized	and	horrific	bath	salt-associated	incident	involved	a	

man	becoming	cannibalistic	during	a	drug	induced	psychotic	break	in	Miami,	Florida.		This	

event	occurred	in	late	2010,	around	the	time	bath	salts	first	began	appearing	as	a	substance	
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of	abuse.		Toxicology	screens	were	inconclusive	for	bath	salts,	but	the	man	had	consumed	

multiple	unknow	pills	found	in	his	stomach	post-mortem.		Bath	salt	drugs	can	contain	one	

or	multiple	compounds	that	can	potentially	cause	such	mental	instability.		These	

compounds	are	related	to	the	naturally	occurring	β-keto	amphetamine	parent	compound,	

methcathinone	(MCAT)	(Baumann,	et	al.	2014).		MCAT	has	been	shown	to	have	

psychostimulant	properties	(Schechter	and	Glennon,	1985),	but	most	bath	salt	drugs	

consist	of	a	cocktail	of	cathinones	and	adulterants,	including	caffeine	and	lidocaine	

(Zawilska	and	Wojcieszak,	2013).		Besides	methcathinone	itself,	there	are	three	main	

cathinones	most	often	found	in	bath	salts;	mephedrone	(4-methyl-N-methylcathinone,	4-

CH3	MCAT),	methylone	(3,4-methylenedioxy-N-methylcathinone),	and	MDPV	(3,4-

methylenedioxypyrovalerone).		The	structure	of	each	and	their	relation	to	methcathinone	

can	be	seen	below	in	Figure	7.			

	 Synthetic	cathinones	behave	by	targeting	monoamine	transporters	in	the	nervous	

system	to	increase	extracellular	monoamine	concentrations	within	neural	synapses.		

Synthetic	cathinones,	like	other	stimulant	drugs	that	interact	with	monoamine	

transporters,	may	cause	neurotransmitter	rise	in	one	of	two	ways.		First,	they	can	act	like	

amphetamine	by	allowing	greater	neurotransmitter	efflux,	or	an	increased	concentration	of	

substrate	to	enter	the	synaptic	cleft.		Second,	bath	salt	compounds	could	act	like	cocaine	by	

blocking	the	transporters	(Rothman	and	Baumann,	2003).		The	amphetamine-like	

mechanism	produces	inward	currents	when	performing	two-electrode	voltage	clamp.		

Cocaine-like	drug	mechanisms	trigger	the	opposite	signal,	or	a	hyperpolarization	on	a	two-

electrode	voltage	clamp	plot	(Baumann	et	al.,	2014).		These	results	have	been	shown	in	

other	models	as	well,	including	HEK293	cells	(Eshleman	et	al.,	2013;	Baumann	et	al.,	2012).			
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	 A	synthetic	cathinone’s	selectivity	for	the	dopamine	transporter	is	a	powerful	

estimation	of	that	particular	drug’s	behavioral	effects.		Selectivity	for	DAT	transporters	

results	in	high	locomotor	stimulation,	while	selectivity	at	SERT	does	not	(Rothman	and	

Baumann,	2006).		Methcathinone	is	mainly	selective	for	DAT,	while	mephedrone	and	

methylone	mirror	the	well-known	illicit	drug	MDMA	(3,4-

methylenedioxymethamphetamine,	“molly”,	“ecstasy”)	by	being	reasonably	nonselective	at	

all	monoamine	transporters.		Specifically,	mephedrone	(4-CH3	MCAT)	causes	higher	

serotonin	release	but	less	dopamine	release	than	methcathinone	(MCAT).		Cathinone	

analogues,	that	contain	the	same	ring-structured	backbone,	have	presented	comparable	

nonselective	results	at	MATs	(Baumann	et	al.,	2012;	De	Felice	et	al.,	2014).			

The	third	main	bath	salt	compound,	MDPV,	exhibits	selectivity	unlike	the	other	two.		

MDPV	has	been	shown	to	be	selective	for	DAT	and	norepinephrine	transmitters,	while	

prompting	little	effect	at	SERT.		MDPV	is	50	times	more	potent	of	a	blocker	at	DAT	than	

cocaine	in	vitro,	and	is	3-10	times	more	potent	of	locomotor	stimulant	than	mephedrone	or	

methylone	(Eshelman	et	al.,	2013;	Baumann	et	al.,	2014).		MDPV	is	the	most	common	

compound	found	in	the	blood	and	urine	of	overdose	victims,	and	it	would	not	be	

unreasonable	to	assume	this	stems	from	MDPV’s	higher	selectivity	and	toxicity.		MDMA	

demonstrates	nonlinear	kinetics	in	rodents	and	humans,	a	process	in	which	autoinhibition	

of	its	own	metabolization	causes	higher	and	more	sustaining	blood	plasma	concentrations	

than	predicted.		MDPV	is	metabolized	similarly	to	MDMA	because	of	the	similarities	in	

structure	and	may	follow	nonlinear	kinetics	as	well.		Furthering	this	problem,	some	of	

MDPV’s	metabolites	are	also	potent	blockers	at	DAT	lengthening	action	at	the	transporter	

even	longer	(Baumann	et	al.,	2014).		Methylone	and	MDPV	are	both	self-administered	in	
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laboratory	rat	models,	but	MDPV	alone	displays	escalation	of	drug	intake	making	its	

liability	for	abuse	even	higher	than	the	other	bath	salt	compounds	(Baumann	et	al.,	2014).	

The	four	cathinone	compounds	listed	above	(methcathinone	[MCAT],	mephedrone	

[4-CH3	MCAT],	methylone,	and	MDPV)	have	either	been	assigned	Schedule	I	status	by	the	

US	Drug	Enforcement	Agency	or	are	on	temporary	Schedule	I	status	pending	further	

evaluation.		Recently,	another	para-substituted	MCAT	analogue	flephedrone,	or	4-F	MCAT,	

has	been	given	temporary	Schedule	I	status	due	to	its	consistent	presence	in	bath	salts.		

Methedrone,	or	4-OCH3	MCAT,	has	not	yet	been	scheduled	but	has	begun	appearing	in	

drugs	as	well	(Bonano	et	al.,	2014).		Preliminary	data	show	varying	potencies	and	efficacies	

at	DAT	and	SERT	for	these	compounds,	each	of	which	differ	from	MCAT	by	just	one	

substituent	on	the	benzyl	ring.		These	variations	suggest	that	para-substituted	MCAT	

analogues	might	be	a	way	for	drug	chemists	to	avoid	DEA	scheduled	illegal	compounds,	but	

produce	a	compound	with	similar	effects.		Studying	multiple	MCAT	analogue	compounds	

with	altered	substituent	groups	could	identify	new	drugs	of	abuse,	and	the	structural	

elements	interacting	with	transporters	that	cause	behavioral	and	neurochemical	effects.	
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Figure	1.8	(borrowed	from	Baumann,	et	al.,	2014):	The	chemical	structures	of	the	main,	or	

parent,	bath	salt	compounds	are	shown.		Both	mephedrone	and	methylone	have	the	

identical	methcathinone	backbone,	with	a	different	group	attached	to	the	benzyl	ring.		

MDPV	bears	the	cathinone	backbone,	but	has	more	complicated	substituents	attached,	

which,	most	likely,	are	the	reasons	for	its	altered	effects	at	monoamine	transporters.		

Amphetamine	and	methamphetamine	are	also	shown	for	comparison	due	to	similar	effects	

and	mechanisms	at	transporters.	
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Aims	of	Study	
	

	

As	novel	synthetic	drug	compounds	continue	to	appear	in	street	drug-cocktails,	a	better	

understanding	is	needed	of	the	human	serotonin	transporter	and	how	drugs	interact	with,	

modulate,	and	elicit	effects	at	the	transporter.		Six	new	4-para	substituted	methcathinone	

analogues	were	tested	using	a	two-electrode	voltage	clamp	oocyte	model	in	order	to	

illustrate	and	quantify	the	differences	in	potency	and	efficacy	at	the	transporter	caused	by	

the	varying	substitutions.	

After	the	raw	data	for	each	compound	is	acquired,	the	Hill	equation	can	be	used	to	calculate	

potency	and	maximum	current.		These	measurements	can	then	be	correlated	with	other	

relevant	factors,	like	electron-withdrawing	capacity	or	lipophilicity,	in	order	to	

demonstrate	which	specific	parameters	could	be	influencing	potency	and	efficacy	at	the	

serotonin	transporter.	
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Materials	and	Methods	
	

3.1	Experimental	Approach	
	
	
	

Electrical	currents	were	recorded	using	TEVC,	mediated	by	hSERT	expressed	in	

Xenopus	laevis	oocytes.		The	oocytes	were	perfused	with	methcathinone	(MCAT),	

flephedrone	(4-F	MCAT),	clephedrone	(4-Cl	MCAT),	brephedrone	(4-Br	MCAT),	

mephedrone	(4-CH3	MCAT),	and	methedrone	(4-OCH3	MCAT).	

	

3.2	Human	Dopamine	and	Serotonin	Transporter	RNA	

	

	 A	DNA	linearization	reaction	was	performed	using	hDAT	and	hSERT	DNA	(both	

amplified	by	VCU’s	DNA	Core	Facility).		Varying	amounts	of	DNA	(10	–	30	μg)	were	added	

to	Not	I	restriction	enzyme,	Buffer	3	(10x),	and	BSA	(100x).		The	mixture	was	then	diluted	

with	ddH2O	to	30	μL	total	volume.	

	 The	QIAquick	PCR	Purification	Protocol	was	then	used	to	microcentrifuge	the	DNA.		

We	used	the	Ambion	mMessage	Machine	T7	kit	to	then	transcribe	hDAT	and	hSERT	cRNA	

in	the	pOTV,	oocyte	transcription	vector.		The	hDAT	and	hSERT	RNA	was	frozen	at	-80	C	

until	needed	for	injection.	
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3.3	Expression	of	Human	Transporters	in	Xenopus	Oocytes	

	

Oocytes	were	harvested	from	adult	Xenopus	laevis.	Anesthetization	by	13%	-	17%	

tricaine	methanesulphonate	solution	was	performed	before	the	ovarian	follicles,	portions	

of	the	ovaries,	were	removed	through	a	small	incision	on	the	frog’s	abdomen.	The	ovarian	

follicles	were	sliced	into	pieces	and	placed	for	2	hours	at	room	temperature	in	Ringer’s	

solution	with	no	added	calcium,	and	with	2mg/ml	collagenase	type	1A.		Afterward,	the	

oocytes	were	rinsed	with	Ringer’s	and	stored	at	18	degrees	Celsius.	

We	chose	healthy	stage	V	and	VI	oocytes	for	cRNA	injection	within	24	hours	of	

oocyte	harvest.		Each	oocyte	was	injected	with	23.0	nL,	29.0	nL	or	36.7	nL	of	1μg	μL-1	

hSERT	cRNA	(equivalent	to	23ng,	29ng,	36.7ng	respectively)	using	Drummond	Scientific	

Co.’s	Nanoject	AutoOocyteInjector.		The	oocytes	incubated	at	18	degrees	Celsius	for	5-10	

days	in	Ringer’s	solution	supplemented	with	5%	dialyzed	horse	serum,	550μg	mL-1	sodium	

pyruvate,	100μg	mL-1	streptomycin,	50μg	mL-1	tetracycline.	

Most	of	the	setbacks	encountered	over	the	past	year	revolved	around	the	oocytes	

and	RNA	injection.		There	did	not	seem	to	be	a	specific	recipe	or	set	up	that	guaranteed	

expression	of	hSERT	in	the	oocytes.	Each	batch	of	oocytes	was	injected	with	a	different	

amount	of	RNA;	18,	23,	27,	32,	36,	or	41	nano-liters.		The	hSERT	RNA	was	even	diluted	both	

5	and	10	times	before	injecting	for	some	hSERT	batches.		It	continually	appeared	that	the	

RNA	was	overly	toxic	for	the	oocytes	and	would	kill	them	prior	to	transporter	expression.		

For	unknown	reasons,	oocytes	harvested	in	the	summer	and	fall	are	not	as	hardy	as	those	

harvested	in	the	winter.		Others	in	the	lab	have	experienced	this	trend	in	the	past	and	it	

could	have	contributed	to	the	stubbornness	of	the	oocytes	these	past	few	months.		
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Performing	more	experiments	to	discern	approximate	recipes	for	expression	of	both	

hSERT	and	hDAT	would	have	been	immensely	helpful.		This	would	eliminate	hours	

preparing	the	TEVC	for	recording	before	learning	that	the	cells	were	not	expressing	

transporter.		These	complications	limited	the	amount	of	time	spent	collecting	data	and	

prevented	the	entire	data	collection	of	all	six	compounds	at	hDAT	in	the	time	given.	

	

3.4	Two-electrode	Voltage	Clamp	and	Analysis	

	

	 A	Gene	Clamp	500	Voltage	and	Patch	Clamp	Amplifier	and	a	16-bit	A/D	converter	

were	used	as	the	voltage	clamp	apparatus	in	these	experiments.		Each	electrode	had	a	

resistance	ranging	from	1	to	5	MΩ.		We	voltage	clamped	the	previously	injected	oocytes	

expressing	hDAT	or	hSERT	to	approximately	-60mV	(-55mV	to	-65mV	range)	and	waited	

for	a	stable	baseline	to	be	reached	while	lightly	perfusing	buffer.		The	data	was	taken	at	5	

kHz	and	saved	digitally	for	later	analysis	using	1	kHz	filtering	and	Clampfit	10.2	software.		

Currents,	both	inward	and	outward,	were	compared	with	holding	currents	(0	to	100	nA	in	

oocytes	with	-20	to	-60	mV	resting	potentials)	required	for	voltage	clamp	at	-60mV.			

	 The	program	OriginLab	Graphing	&	Analysis	was	used	to	generate	statistical	plots	of	

the	data,	apply	the	Hill	or	Hill1	equations,	and	to	calculate	the	Imax	and	EC50	values.	
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3.5	Solutions	

	

	 The	oocyte	incubation	media	consisted	of:	96	mM	NaCl,	0.6	mM	CaCL2,	2	mM	KCl,	5	

mM	MgCl2,	5	mM	HEPES,	550	μg	mL-1	Na	pyruvate,	100	μg	mL-1	streptomycin,	50	μg	mL-1	

tetracycline,	and	5%	horse	serum,	adjusted	to	pH	7.4	using	KOH.	

The	extracellular	two-electrode	voltage	clamp	buffer	solution	consisted	of	(in	mM):	

7.5	HEPES,	1.2	Ca2+	gluconate,	120	NaCl,	5.4	K	gluconate,	and	the	pH	was	adjusted	to	7.4	

with	KOH.	

	 The	intracellular	electrode	was	filled	with	3	M	KCl.	

	

3.6		4-para	Methcathinone	Drug	Analogues	

	

	 Methcathinone	(MCAT)	and	the	five	analogues	used	in	these	experiments	were	

synthesized	in	racemic	HCL	salt	form	by	R.	Glennon’s	lab	at	VCU	School	of	Medicine	using	

formerly	published	procedures:	MCAT	(Findlay	et	al.,	1981),	4-F	MCAT	(Archer,	2009),	4-

OCH3	MCAT	(Lespagnol	and	Hallot,	1954),	4-Cl	MCAT	(Trepanier	and	Sprancmanis,	1964),	

4-Br	MCAT	(Foley	and	Cozzi,	2003),	and	4-CH3	MCAT	(McDermott	et	al.,	2011).		Each	

compound	was	frozen	as	a	10	micro-molar	solution	and	diluted	to	the	appropriate	

concentrations	when	necessary	for	testing.		

Six	different	compounds	were	tested	in	total.		The	first	compound	was	

methcathinone,	the	parent	compound	to	the	others,	and	also	known	by	the	names	

ephedrone	or	α-methylamino-propiophenone.		Each	of	the	other	four	analogues	has	a	

substituent	group	replacing	methcathinone’s	hydrogen	at	the	4-para	position	on	the	benzyl	
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ring.	The	substituent	group	is	often	labeled	as	‘R’	when	comparing	to	methcathinone,	as	in	

4-R	MCAT.		The	second	compound	tested	was	4-F	MCAT,	also	known	as	flephedrone	(4-

fluoromethcathinone).		Third	and	fourth	compounds	tested	were	4-Cl	MCAT,	or	

clephedrone	(4-chloromethcathinone),	and	4-Br	MCAT	or	brephedrone	(4-

bromomethcathinone).		The	final	two	compounds	have	a	methyl	group	and	a	methoxy	

group	attached	at	the	4-para	position;	fifth	is	4-CH3	MCAT,	or	mephedrone	(4-methyl	

methcathinone),	and	the	sixth	compound	is	4-OCH3	MCAT,	or	methedrone	(para-

methoxymethcathinone).		During	testing	and	analysis	each	drug	was	labeled	with	its	

synthesizers	initials	and	date,	so	that	no	bias	could	be	introduced	from	previously	

conceived	notions	about	the	compounds.			

	 Methcathinone	was	placed	on	the	United	State’s	federal	‘Schedule	I	Controlled	

Substances’	list	in	1994	making	it	illegal	and	a	felony	to	possess	without	permission	for	

research.		Flephedrone	is	currently	a	member	of	the	United	States’	temporary	Schedule	1	

controlled	substances	list	and	is	illegal	in	many	other	countries.		Clephedrone	is	currently	

illegal	in	Germany,	Sweden,	and	China	but	has	yet	to	be	specifically	banned	in	the	US.		

Brephedrone	and	methedrone	have	been	outlawed	in	China,	and	mephedrone	has	been	

forbidden	in	many	countries	outside	the	US	where	the	substance	has	repeatedly	been	

found	in	recreational	drugs.		In	1986	the	United	States	Congress	passed	the	Federal	

Analogue	Act	as	a	part	of	the	Controlled	Substances	Act.		The	analogue	act	made	chemicals	

“substantially	similar”	to	those	compounds	listed	as	schedule	1	or	schedule	2	illegal	as	well,	

if	intended	for	human	consumption.		For	clarification,	schedule	1	drugs	are	those	that	have	

a	high	potential	for	abuse,	have	not	been	approved	for	use	in	medical	treatment,	possess	a	

lack	of	safety	even	under	medical	supervision,	and	have	a	high	probability	of	psychological	
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and	physical	dependence.		Schedule	2	drugs	have	a	high	potential	for	abuse,	can	cause	

severe	psychological	or	physical	dependence,	but	have	currently	accepted	medical	use	with	

great	restriction	(dea.gov).		The	chemical	structure	of	all	six	compounds	tested	can	be	seen	

on	the	next	page	with	their	corresponding	most	common	names.	
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R	=	substituent	group		 -	 H	 				methcathinone	
	 	 	 	 	 	 -	 F	 										flephedrone	
	 	 	 	 	 	 -	 Cl	 										clephedrone	
	 	 	 	 	 	 -	 Br	 								brophedrone	
	 	 	 	 	 	 -	 CH3	 									mephedrone	
	 	 	 	 	 	 -	 OCH3	 	methedrone	
	
	
Figure	3.1	:	Structure	of	Methcathinone	and	Analogues	(borrowed	from	Bonano	et	al.,	

2014).		The	backbone	structure	of	methcathinone	with	the	letter	“R”	representing	the	

placement	of	4-para	substituent	groups.	Beneath	the	structure,	the	six	different	substituent	

groups	are	listed	along	with	the	common	names	for	each.		Each	of	the	compounds	can	be	

written	as	4-R	MCAT	instead	of	their	common	name.		These	compounds	also	can	be	written	

by	describing	the	functional	group	makeup	of	the	compound	(ex:	α-methylamino-

propiophenone	is	another	way	of	saying	methcathinone),	though	for	simplicity	those	

names	are	not	listed	here. 
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Results	

	

4.1 Two-electrode	Voltage	Clamp	Recordings	

	

Xenopus	oocytes	vary	in	their	ability	to	express	human	RNA	and	in	the	amount	of	

time	that	is	required.		Oocytes	express	the	serotonin	transporter	(SERT)	much	faster	than	

the	dopamine	transporter	(DAT).		Data	was	often	collected	within	a	week	of	injecting	RNA	

into	the	oocyte,	and	in	some	cases	in	as	little	as	3	days	post	injection.		It	appeared	as	though	

the	RNA	was	toxic	for	the	cells	after	most	injections.		The	injected	cells	declined	in	health	

and	died	much	quicker	than	control	cells	injected	with	water,	and	quicker	than	controls	

that	were	not	injected.		The	toxicity-caused-death	often	forced	TEVC	recordings	into	a	very	

small	window	between	the	time	the	cells	begin	expressing	the	transporter	and	when	the	

cell	membrane	begins	breaking	down	and	cannot	hold	a	current	to	collect	TEVC	data.	

	 Data	collection	for	each	drug	was	also	complicated	by	the	presence	of	a	residual	

“shelf”	most	often	seen	in	higher	drug	concentrations.		When	a	shelf	is	present,	the	oocyte	

can	no	longer	be	used	for	recording	because	the	transporter	is	saturated,	or	forced	to	

remain	open	by	the	drug,	and	therefore	depolarizes	the	resting	current.		The	oocyte	must	

be	discarded	after	one	reading	and	replaced	with	another	oocyte	because	the	oocyte	will	

not	return	to	a	normal	baseline.	

Ideal	voltage	clamp	command	potential	for	oocytes	is	-60mV,	about	-10mV	less	than	

the	resting	membrane	potential	of	neural	cells	in	the	human	body.		When	testing,	a	range	
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from	-55	to	-65	was	accepted.		Generally,	all	data	for	each	drug	on	a	given	transporter	was	

collected	the	same	day	to	prevent	discrepancies	due	to	health	of	the	oocyte	or	differing	

batches	of	expressing	injected	oocytes.		Example	recordings	from	the	different	compounds	

can	be	seen	on	pages	42	and	43.	

	 A	5µM	concentration	of	5-HT	or	DA	is	most	commonly	used	as	a	baseline	response	

concentration	in	two-electrode	voltage	clamp.		At	concentrations	over	5µM,	the	overall	

response	can	begin	to	decline.		This	occurrence	is	believed	to	be	caused	by	over-

competition	at	the	transporter	pore,	slowing	down	the	amount	of	substrate	and	ions	

traveling	through	and	decreasing	the	total	inward	current	(Mager	et	al.,	1994).		The	first	

recording	(Fig.	4.1	A)	of	[10µM]	methcathinone	shows	the	smallest	response	of	the	six	

recordings	by	far,	with	an	average	response	at	33.3%	with	[10µM].		The	second	recording	

(Fig.	4.1	B)	displays	flephedrone	at	10µM	perfusion	concentration.		Flephedrone’s	average	

response	at	this	concentration	is	the	second	lowest	at	61.2%	average	relative	response	for	

6	recordings.		Clephedrone	(Fig.	4.1	E)	has	the	third	lowest	average	at	95.5%	relative	

response	for	[10µM].		Mephedrone	(Fig.	4.1	F)	is	fourth	with	an	average	relative	response	

at	110.1%	for	10µM	concentration.		Brephedrone	(Fig.	4.1	C)	displays	the	second	highest	

response,	with	112.9%	relative	response	average	at	[10µM].		Methedrone	(Fig.	4.1	D)	

clearly	possesses	the	largest	response	at	[10µM]	with	155%	shown	and	142.6%	average	

compared	to	the	5µM	5-HT	standard.			

	 The	only	compound	that	does	not	demonstrate	a	shelf,	or	potential	for	a	shelf,	after	

perfusion	at	[10µM]	is	methcathinone	(Fig.	4.1	A).		All	five	methcathinone	analogues	tested	

(Fig.	4.1	B-F)	show	a	shelf	after	perfusion,	though	flephedrone	and	mephedrone	appear	to	

trend	back	towards	the	original	baseline	much	faster	than	the	other	3	analogues.		
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More	data	would	be	needed	to	quantify	each	compound’s	shelf.		Therefore,	it	is	impossible	

to	speculate	at	this	time	as	to	which	compound	creates	the	largest	shelf	and	greatest	time	

differential	before	returning	to	baseline.		It	is	important	to	note	that	the	relative	responses	

are	given	because	each	recording	was	taken	using	a	different	oocyte	having	an	individually	

distinct	inward	current	when	perfused	with	5µM	5-HT.		So	while	the	recordings	in	figure	

4.1	are	lined	up	next	to	each	other,	simply	comparing	them	by	eye	is	not	sufficient	because	

there	is	not	a	standard	response	to	5µM	5-HT	perfusion.		It	is	also	worth	noting	that	the	

recordings	did	not	follow	a	set	time	frame.		Some	oocytes	take	longer	than	others	to	

establish	a	baseline	current,	and	therefore	the	amount	of	time	before	5µM	5-HT	perfusion	

and	before	drug	perfusion	varies	for	each	oocyte.	
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Figure	4.1	:	Two-electrode	voltage	clamp	recordings.		A:	Methcathinone	recording	at	10µM	

concentration,	small	relative	response	of	32%	with	no	shelf	present.		B:	Flephedrone	

recording	at	10µM	concentration,	relative	response	of	93%	with	shelf	present.	C:	

Brephedrone	recording	at	10µM	concentration,	large	relative	response	of	119%	and	large	

shelf	present.		D:	Methedrone	recording	at	10µM	concentration,	large	relative	response	of	

155%	and	very	large	shelf	present	post	brephedrone	perfusion.		E:	Clephedrone	recording	

at	10µM	concentration,	relative	response	of	92%	with	large	shelf	shown.	F:	Mephedrone	

recording	at	10µM	concentration,	94%	relative	response	with	smaller	shelf	slowly	trending	

back	toward	the	original	baseline.		Each	arrow	demarcates	where	resulting	currents	were	

measured.	
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4.2 OriginLab	–	Data	Analysis	and	Graphics	
	
	
	

After	the	two-electrode	voltage	clamp	recordings	were	taken,	the	baseline	of	each	

graph	was	adjusted	with	the	ClampFit	program,	if	need	be.		When	collecting	the	data,	the	

sampling	rate	was	10kHz	at	an	interval	of	100	micro-seconds.		This	large	amount	of	data	

was	reduced	by	a	factor	of	100	and	the	substituted	average	gave	the	graphs	shown	in	the	

previous	section.		After	reduction	and	a	change	in	baseline,	the	[5µM]	5-HT	response	was	

calculated	from	the	baseline,	or	the	point	at	which	5-HT	was	given,	to	the	bottom	of	the	5-

HT	inward	current.		These	nano-amp	inward	currents	ranged	in	value	and	did	not	always	

reach	a	steady	maximum	depression.		When	there	was	not	an	obvious	maximum	

depression,	the	nano-amp	difference	was	calculated	from	baseline	to	the	most	consistent	

point	in	the	bottom	of	the	depression.		The	amount	of	inward	current	caused	by	the	

synthetic	cathinone	compounds	was	calculated	using	the	same	technique	–	from	the	

baseline	point	where	drug	was	given	to	the	most	consistent	point	at	the	bottom	of	the	

inward	current.		At	least	three	calculations	were	taken	for	each	drug	concentration,	each	

from	a	different	oocyte.		For	most	concentrations,	between	five	and	ten	points	were	used.		

The	calculations	were	entered	into	Microsoft	Excel	and	a	relative	response	was	calculated	

by	dividing	the	total	nano-amps	of	drug	response	by	the	total	nano-amps	of	5-HT	response.		

The	calculation	of	relative	response	was	required	because	different	oocytes	were	used	for	

each	data	point.		An	average	of	the	relative	responses	was	then	calculated	for	each	drug	

concentration,	along	with	a	standard	deviation	and	standard	error	about	the	mean.			For	

clarification,	an	example	of	Excel	data	entry	and	calculations	can	be	seen	in	Table	4.2	on	the	

following	page.		
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Table	4.2	:	Example	of	data	entered	into	excel	and	calculations	performed	for	each	

concentration	of	all	six	drug	compounds.		Here,	example	data	is	shown	for	six	different	

TEVC	calculations,	all	at	0.1µM	concentration	of	flephedone	(FTS-024)	with	their	average	

and	standard	deviation	(standard	error	about	the	mean	not	shown).		Below	that	data,	the	

averages	for	each	flephedrone	concentration	multiplied	by	100	and	standard	deviations	

multiplied	by	100	are	displayed	(other	data	for	flephedrone	used	to	calculate	averages	not	

shown).		The	values	are	multiplied	by	100	in	order	to	be	used	as	a	percentage	when	

plotting	the	data	later	in	Origin.	
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	 The	calculations	of	average	and	standard	deviation	(x100)	for	each	concentration	

were	entered	into	OriginLab	Data	Analysis	program.		Using	this	program,	plots	were	

created	for	each	drug	based	on	the	averages	and	deviations.		After	plotting	the	points,	the	

Hill	equation	was	fitted	to	the	plot,	and	the	Hill	equation	calculated	a	Imax	and	a	EC50	for	

each	drug	compound.		These	plots	begin	on	the	following	page.	

	 The	Hill	equation	was	developed	by	Archibald	Hill	in	1910	to	quantify	cooperative	

binding,	originally	to	describe	oxygen	bound	to	hemoglobin.		Cooperative	binding	is	the	

variability	(or	affinity)	of	specific	ligand	binding	due	to	the	presence,	or	lack	of,	other	

ligands	already	being	bound	at	additional	sites.		This	is	also	known	as	allosteric	control.		

The	Hill	equation	is	a	transformation	of	a	logistic	function	and	the	Hill	equation	written	as	a	

rational	function	for	allosteric	affinity	calculations	is:	

I	=	(	Imax[S]n	)	/	(	Kn	+	[S]	)	

where	I	is	the	reaction	velocity,	Imax	is	maximum	reaction	velocity,	[S]	is	substrate	

concentration,	K	is	analogous	to	Michaelis	constant	(Km)	or	EC50,	and	n	is	the	Hill	coefficient	

–	representing	the	degree	of	coopertivity.		When	the	Hill	coefficient	equals	1,	there	is	not	

allosteric	affinity	and	binding	of	the	ligand	is	completely	independent.		When	the	Hill	

coefficient	is	less	than	1,	this	indicates	negatively	cooperative	binding,	which	follows	

Michaelis-Menten	kinetics	and	a	hyperbolic	plot.		Positively	cooperative	binding	occurs	

when	the	Hill	coefficient	exceeds	1	and	follows	a	sigmoidal	shape	when	plotting	velocity	

and	substrate	concentration	(The	Biology	Project,	2007).	

	 OriginLab	also	offers	a	variation	of	the	Hill	equation,	the	Hill1,	an	offset	version.		

Hill1	was	used	for	5	of	6	plots	because	it	gave	more	accurate	fits	with	the	data.		The	Hill1	

equation	is:	 	 y	=	[	START	+	(END	–	START)	]	[	(	xn	)	/	(	kn	+	xn	)	]	
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Figure	4.3	:	Plot	of	Methcathinone’s	(MCAT)	average	relative	responses	at	the	human	

serotonin	transporter,	including	error,	as	compared	to	the	[5µM]	5-HT	standard.		Data	

gathered	at	0.1,	0.5,	1.0,	5.0,	10.0,	30.0,	50.0,	and	100.0µM-drug	concentrations.		A	Hill1	Fit	

line	is	shown.		Imax	=	98.44%	(+/-	6.37),	EC50	=	15.73µM	(+/-	3.05).		
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Figure	4.4	:	Plot	of	Flephedrone’s	(4-F	MCAT)	average	relative	responses	at	the	human	

serotonin	transporter,	including	error,	as	compared	to	the	[5µM]	5-HT	standard.		Data	

gathered	at	0.1,	0.3,	1.0,	3.0,	10.0,	and	30.0µM-drug	concentrations.		A	Hill1	Fit	line	is	

shown.	Imax	=	84.55%	(+/-	7.48),	EC50	=	4.67µM	(+/-	1.36).	
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Figure	4.5	:	Plot	of	Brephedrone’s	(4-Br	MCAT)	average	relative	responses	at	the	human	

serotonin	transporter,	including	error,	as	compared	to	the	[5µM]	5-HT	standard.		Data	

gathered	at	0.1,	0.3,	1.0,	3.0,	10.0,	and	30.0µM-drug	concentrations.		A	Hill	Fit	line	is	shown.		

Imax	=	103.37%	(+/-	0.57),	EC50	=	0.52µM	(+/-	0.01).			
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Figure	4.6	:	Plot	of	Methedrone’s	(4-OCH3	MCAT)	average	relative	responses	at	the	human	

serotonin	transporter,	including	error,	as	compared	to	the	[5µM]	5-HT	standard.		Data	

gathered	at	0.1,	0.5,	1.0,	5.0,	10.0,	and	50.0µM-drug	concentrations.		A	Hill1	Fit	line	is	

shown.		Imax	=	203.39%	(+/-	20.15),	EC50	=	5.56µM	(+/-	1.33).	
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Figure	4.7	:	Plot	of	Clephedrone’s	(4-Cl	MCAT)	average	relative	responses	at	the	human	

serotonin	transporter,	including	error,	as	compared	to	the	[5µM]	5-HT	standard.		Data	

gathered	at	0.1,	0.5,	1.0,	5.0,	10.0,	and	50.0µM-drug	concentrations.		A	Hill	Fit	line	is	shown.		

Imax	=	108.46%	(+/-	8.39),	EC50	=	1.28µM	(+/-	0.33).	
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Figure	4.8	:	Plot	of	Mephedrone’s	(4-CH3	MCAT)	average	relative	responses	at	the	human	

serotonin	transporter,	including	error,	as	compared	to	the	[5µM]	5-HT	standard.		Data	

gathered	at	0.1,	0.5,	1.0,	5.0,	10.0,	and	50.0µM-drug	concentrations.		A	Hill1	Fit	line	is	

shown.		Imax	=	112.12%	(+/-	4.34),	EC50	=	1.20µM	(+/-	0.128).	
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4.3 Comparisons	of	Compounds		
	

	

The	plots	shown	of	hSERT’s	response	to	each	of	the	six	compounds	(seen	on	the	last	

few	pages)	as	compared	to	[5µM]	5-HT	can	be	combined	into	one	plot	–	Figure	4.9.		In	the	

Hill	equation,	Imax	refers	to	the	maximum	current	of	the	reaction.		In	other	words,	Imax	is	a	

measurement	of	how	fast	or	efficient	each	drug	compound	can	pass	through	the	

transporter	alongside	ions	causing	the	inward	currents	seen	in	TEVC.		Methedrone	has	the	

highest	Imax	by	far,	followed	by	the	Imax	of	every	other	compound	at	about	half	methedrone.		

Exact	values	of	Imax	can	be	compared	in	Table	4.10	on	the	next	page	and	in	Figure	4.11	on	

the	following	page.	

It	is	impossible	to	distinguish	the	EC50	values	from	the	plot	alone.		The	EC50	is	the	K	

value	in	the	Hill	equation	and	is	also	synonymous	with	KM.		The	EC50		gives	the	effective	

concentration	at	which	you	reach	50%	of	Imax.		In	other	words,	it	is	half	Imax	or	a	measure	of	

each	compounds’	potency.		Brephedrone	is	the	most	potent	compound	with	a	EC50	of	0.52	

followed	by	mephedrone	at	EC50	=	1.20.		This	means	that	for	these	two	compounds,	a	

0.52µM	concentration	and	a	1.20µM	concentration	cause	50%	of	their	overall	effect,	

respectively.		Clephedrone	is	the	third	most	potent	with	EC50	=	1.29,	followed	by	

flephedrone	(EC50	=	4.67),	methedrone	(EC50	=	5.56),	and	finally	methcathinone	(EC50	=	

15.73).		These	exact	EC50	values	can	be	compared	in	Table	4.10,	on	the	following	page	in	

bar	graph	form	on	Figure	4.12,	and	as	a	scatter	plot	in	Figure	4.13.	
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Figure	4.9	:	Hill	equation	plots	of	all	6	compounds	with	the	Hill	coefficients	shown	in	

parentheses.	

DRUG	 Imax	 Imax	error	 EC50	 EC50	error	
Brephedrone	 103.37	 0.57	 0.52	 0.01	
Mephedrone	 112.12	 4.34	 1.2	 0.128	
Clephedrone	 108.46	 8.39	 1.29	 0.33	
Flephedrone	 84.55	 7.48	 4.67	 1.36	
Methedrone	 203.39	 20.15	 5.56	 1.33	
Methcathinone	 98.44	 6.37	 15.73	 3.05	
Table	4.10	:	Imax	(%	of	[5µM]	5-HT	response)	and	EC50		(µM)	for	all	five	4-para	MCAT	

analogues	and	methcathinone.		Compounds	listed	in	order	of	potency.		All	errors	are	

standard	deviations	from	the	mean.	
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Figure	4.11	:	Bar	graph	representation	of	Imax	for	all	6	compounds.	
	
	
	

	
	
	
Figure	4.12	:	Bar	graph	representation	of	EC50	for	all	6	compounds.	
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Figure	4.13:	A	normalized	graph	of	all	six	Hill	equation	fits,	making	EC50	for	each	

compound	at	SERT	easier	to	visually	determine.		Where	each	line	falls	on	the	X	axis,	at	Y	

value	=	0.5,	equals	the	EC50.		The	smaller	the	EC50	value,	the	more	potent	the	compound.		So,	

for	example,	brephedrone’s	X	value	at	Y=0.5	is	smaller	than	clephedrone’s	making	

brephedrone	the	more	potent	compound.		Hill	equation	coefficients	are	shown	for	each	

compound	in	parentheses.	
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4.4	Correlational	Comparisons	
	
	
	

The	EC50	values	calculated	from	concentration-effect	curves	in	oocytes	for	each	drug	

compound	were	first	correlated	with	the	nanomolar	in-vitro	release	EC50	values	from	

Bonano	et	al.,	2014	and	Baumann	et	al.,	2012.		The	results	were	statistically	significant,	

with	the	p	value	equaling	0.039	and	the	r	value	equaling	0.83,	indicating	a	predictive	

relationship	between	the	two.		The	correlational	results	can	be	seen	in	Figure	4.15.	

Next,	the	EC50	oocyte	values	and	their	respective	cubic	angstrom	volume	amounts	

were	compared.		The	resulting	correlation	gave	a	weak	correlation	between	the	two	(p	=	

0.0026,	r	=	-0.56),	mainly	due	to	the	outlier	methedrone	(4-OCH3	MCAT).		When	

methedrone	was	excluded,	it	resulted	in	a	strong	correlation	between	the	EC50	values	and	

volume	(p	=	0.0005,	r	=	-0.992).		The	results	with	the	outlier	can	be	seen	in	Figure	4.16	and	

the	correlation	without	methedrone	are	seen	in	Figure	4.17.	

	 After	the	previous	correlations	suggested	that	methedrone	is	an	outlier,	other	

correlations	were	performed	to	search	for	a	possible	explanation.		First,	the	EC50	values	

were	correlated	with	Taft’s	Steric	Parameter	(listed	in	Table	4.14),	or	a	measure	of	overall	

steric	bulk,	different	from	the	cubic	angstrom	values	of	volume	used	previously.		This	

resulted	in	a	strong	and	statistically	significant	correlation	(p	=	0.003,	r	=	0.95)	and	can	be	

seen	in	Figure	4.18.			

	 Next,	the	EC50	values	from	oocytes	were	correlated	with	the	corresponding	values	

for	each	4-para	substitution’s	electron	withdrawing	capacity.		These	values	can	be	found	in	

Table	4.14.		The	results	from	this	correlation	were	statistically	insignificant	(p	=	0.377,	r	=	-

0.445)	and	can	be	seen	in	Figure	4.19.			
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	 Values	of	lipophilicity	for	each	compound	were	correlated	with	their	EC50	values	

obtained	from	oocyte	concentration-effect	curves.		The	results	were	statistically	significant	

with	p	=	0.004	and	r	=	-0.933.		The	lipophilicity	values	for	each	compound	can	be	found	in	

Table	4.14	and	the	correlation	results	can	be	seen	in	Figure	4.20.	

	 The	measurements	of	volume	do	not	correlate	strongly	with	the	corresponding	

Taft’s	E	values,	as	can	be	seen	in	Figure	4.21.		The	correlation	resulted	in	r	=	-0.65	and	p	=	

0.16.		Once	again,	methedrone	(4-OCH3	MCAT)	appeared	to	be	an	outlier	so	the	correlation	

was	performed	again	without	methedrone.		The	results	were	statistically	significant	(r	=							

-0.97,	p	=	0.005)	and	can	be	seen	in	Figure	4.21	as	well.	

	 Unlike	the	EC50	values	obtained	from	oocyte	concentration	curves,	the	EC50	values	

from	Baumann	et	al.	(2012)	correlate	strongly	with	Taft’s	E	and	measures	of	volume.		The	

results	for	EC50	values	in	synaptosomes	correlated	with	Taft’s	E	are	shown	in	Figure	4.22	(r	

=	0.88,	p	=	0.02)	and	the	results	for	EC50	values	in	synaptosomes	correlated	with	volume	

can	be	found	in	Figure	4.23	(r	=	-0.92,	p	=	0.008).		All	the	values	used	can	be	seen	in	Table	

4.14.	

	 Lastly,	the	EC50	values	from	oocyte	concentration	curves	were	correlated	with	both	

substituent	length	and	maximum	width	of	the	substituent.		Both	returned	statistically	

insignificant	correlations	when	methedrone	(4-OCH3	MCAT)	was	included.		EC50	values	

correlated	with	length	are	shown	in	Figure	4.24	(r	=	-0.61,	p	=	0.19)	and	EC50	values	

correlated	with	maximum	width	are	shown	in	Figure	4.26	(r	=	-0.32,	p	=	0.54).		When	

methedrone	was	excluded,	both	returned	strong	and	statistically	significant	correlations.		

Figure	4.25	displays	the	correlation	between	EC50	values	and	substituent	length,	without	

methdrone	(r	=	-0.96,	p	=	0.01).		The	correlation	between	EC50	values	and	substituent	
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maximum	width,	excluding	methedrone,	can	be	seen	in	Figure	4.27	(r	=	-0.95,	p	=	0.01).		

The	values	for	substituent	length	and	width	were	borrowed	from	the	Sakloth	et	al.	(2014)	

paper	and	can	be	found	below	in	Table	4.14.	

	

	

	

	
	

	
	
	
	

	

Table	4.14:		Values	used	in	each	correlational	comparison.		The	EC50	values	in	oocytes	are	

measured	in	micromolar	amounts.		EC50	values	in	synaptosomes	are	nanomolar	(Bonano	et	

al.,	2014,	Baumann	et	al.,	2012)	and	volume	is	cubic	angstroms	(Sakloth,	et	al.	2015).		Taft’s	

values	are	a	measure	of	functional	steric	bulk,	EWC	is	short	for	‘electron-withdrawing	

capacity’,	and	the	lipophilicity	of	each	compound	is	also	shown..	(Sakloth,	et	al.	2015).		

Physochemical	parameters	(Taft’s,	EWC,	Lipophilicity)	borrowed	from	Wolff,	1980.		Finally,	

the	length	of	substituent	(Å),	and	maximum	width	of	substituent	(Å)	for	each	compound	

are	also	listed	(Sakloth,	et	al.	2015).	
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Figure	4.15:	LogEC50	values	from	concentration-effect	curves	in	oocytes	correlated	with	

the	logEC50	values	from	Bonano	et	al.,	2014	and	Baumann	et	al.,	2012,	found	in	Table	4.14.	
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Figure	4.16:	Correlational	analysis	of	EC50	values	obtained	from	oocyte	concentration-

effect	curves	including	methedrone	(4-OCH3	MCAT).		Results	are	statistically	significant	but	

with	a	very	weak	correlation.		Volume	values	for	each	compound	can	be	found	in	Table	

4.14.			
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Figure	4.17:	Correlational	analysis	of	EC50	values	obtained	from	oocyte	concentration-

effect	curves	and	respective	values	of	volume	for	each	compound,	excluding	methedrone	

(4-OCH3	MCAT)	shown	here	in	red.		Results	are	statistically	significant,	with	a	very	strong	

correlation	suggesting	that	methedrone	is	an	outlier.		Volume	values	for	each	compound	

can	be	found	in	Table	4.14.			
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Figure	4.18:	Correlational	analysis	of	EC50	values	obtained	from	oocyte	concentration-

effect	curves	and	Taft’s	Steric	E	values,	or	a	measure	functional	steric	bulk.		Taft’s	values	for	

each	compound	can	be	found	in	Table	4.14.			
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Figure	4.19:	Correlational	analysis	of	EC50	values	obtained	from	oocyte	concentration-

effect	curves	and	Electron-Withdrawing	Capacity	(EWC)	values.		EWC	values	for	each	

compound	can	be	found	in	Table	4.14.		This	correlation	is	statistically	insignificant,	but	if	

we	exclude	4-CH3	MCAT	and	4-OCH3	MCAT	then	the	results	are	statistically	significant	(r	=	-

0.96,	p	=	0.04).	
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Figure	4.20:	Correlational	analysis	of	EC50	values	obtained	from	oocyte	concentration-

effect	curves	and	lipophilicity	values.		Lipophilicity	values	for	each	compound	can	be	found	

in	Table	4.14.			
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Figure	4.21:	Correlation	between	Taft’s	Steric	E	and	the	volume	of	each	methcathinone	

analog.		All	values	can	be	found	in	Table	4.14.		The	correlation	between	Taft’s	and	Volume	

is	weak	and	statistically	insignificant,	r	=	=0.65	and	p	=	-0.16.		When	methedrone	(4-OCH3	

MCAT)	is	excluded,	r	=	-0.97	and	p	=	0.005,	suggesting	that	particular	point	is	an	outlier.	
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Figure	4.22:	Correlational	analysis	between	all	six	EC50	values	in	synaptosomes	(Baumann	

et	al.,	2012)	and	Taft’s	Steric	E	(Bonano	et	al.,	2014).		The	result	is	statistically	significant,	

with	an	r	value	of	0.88	and	a	p	value	of	0.02.		All	values	can	be	found	in	Table	4.14.		

	
	
	
	
	
	



www.manaraa.com

	68	

	
	
	
	
	
Figure	4.23:	Correlational	analysis	between	all	six	EC50	values	in	synaptosomes	(Baumann	

et	al.,	2012)	and	the	volume	of	each	corresponding	compound.		The	correlation	is	

statistically	significant,	r	=	-0.92	and	p	=	0.008.		All	the	values	can	be	found	in	Table	4.14.	
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Figure	4.24:	The	EC50	values	from	concentration	curves	in	oocytes	correlated	with	the	

length	of	each	substituent,	in	angstroms.		The	substituent	length	values	can	be	found,	along	

with	the	EC50	values,	in	Table	4.14.		The	correlation	gave	a	statistically	insignificant	result,	r	

=	-0.61	and	p	=	0.19.			
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Figure	4.25:		Excluding	methedrone	(4-OCH3	MCAT),	the	EC50	values	from	concentration	

curves	in	oocytes	correlated	with	the	length	of	each	substituent.		The	substituent	length	

values	can	be	found,	along	with	the	EC50	values,	in	Table	4.14.		Unlike	the	previous	

correlation	(with	methedrone	included),	the	results	were	statistically	significant	–	r	=	-0.96	

and	p	=	0.01.	
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Figure	4.26:	The	EC50	values	from	concentration	curves	in	oocytes	correlated	with	each	

substituent’s	width,	in	angstroms.		The	results	are	statistically	insignificant,	r	=	-0.32	and		

p	=	0.54.		All	values	can	be	found	in	Table	4.14.	
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Figure	4.27:	Correlational	statistics	between	the	EC50	values	from	concentration	curves	in	

oocytes	and	the	width	of	each	substituent,	excluding	methedrone	(shown	in	red).		The	

results	of	this	correlation	are	statistically	significant	after	excluding	the	methedrone	outlier	

point	(r	=	-0.95,	p	=	0.01).			
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Table	4.28	:	A	summary	of	all	correlational	analyses	performed.		Results	are	listed	here	

including	the	exact	R	and	P	values.		Visual	representations	of	each	correlation	can	be	found	

in	Figures	4.15	–	4.27.	
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Discussion	
	
	
	

	 Two	different	variations	of	the	Hill	equation	were	used	to	calculate	maximum	

currents	and	EC50	values	for	the	six	4-para	substituted	methcathinone	compounds.		The	

‘Hill’	equation	was	fitted	to	flephedrone	(4-F	MCAT),	brephedrone	(4-Br	MCAT),	and	

clephedrone	while	the	‘Hill1’	equation	was	used	for	methcathinone	(MCAT),	methedrone	

(4-OCH3	MCAT),	and	mephedrone	(4-CH3	MCAT).		The	Hill1	equation	includes	an	offset	and	

was	used	when	the	lowest	concentration	of	each	compound	(0.1	micromolar)	recorded	was	

significantly	greater	than	zero.		Flephedrone,	brephedrone,	and	clephedrone	either	elicited	

no	response	at	the	0.1	micromolar	concentration,	or	were	trending	toward	zero	and	the	

Hill1	offset	was	not	needed.		Methcathinone	required	more	data	points	for	a	proper	Hill	

equation	fit	due	to	its	high	EC50	value.		Recordings	were	taken	at	0.1,	0.5,	1.0.	5.0,	10.0,	30.0,	

50.0,	and	100.0µM-drug	concentrations	for	methcathinone.			

	 Five	of	the	six	compounds	were	found	to	have	reasonably	similar	maximum	

currents	(between	84-113	nano-amps),	while	methedrone	(4-OCH3	MCAT)	had	a	maximum	

current	of	203.39	nano-amps.		The	much	larger	maximum	current	suggests	that	

methedrone	is	much	more	efficacious	at	hSERT	than	the	other	compounds.		In	other	words,	

methedrone	is	much	better	at	opening	the	transporter	and	allowing	current	to	flow	thru	

regardless	of	potency	at	the	transporter.		The	vast	difference	in	maximal	current	adjusts	

methedrone’s	EC50	to	the	right	on	the	graph	–	or	makes	it	larger	than	expected.		Baumann	

et	al.	(2012)	and	Bonano	et	al.	(2014)	simply	looked	at	total	release	of	serotonin	in	
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synaptosomes	caused	by	each	compound.		Methcathinone	might	have	caused	total	release	

much	quicker	than	the	other	compounds,	but	their	experimental	set	up	did	not	take	into	

account	the	differences	in	time	of	release	and	efficacy	of	the	compounds.		This	could	

possibly	explain	methcathinone’s	lack	of	correlation	between	oocyte	and	synaptosome	data	

(seen	in	Figure	4.15).		Methcathinone’s	degree	of	efficacy	at	the	serotonin	transporter	could	

also	have	other	effects,	if	repeatable	in	vivo.		Is	it	possible	that	methcathinone	might	

activate	other	transporters	or	channels	as	well	due	to	its	high	degree	of	efficacy.		For	

instance,	the	amount	of	current	caused	my	methedrone	acting	on	the	serotonin	transporter	

could	be	enough	to	activate	surrounding	calcium	channels.		Methedrone’s	effects	at	other	

related	transporters	would	be	an	interesting	continuation	of	this	project,	due	to	its	high	

efficacy	and	possible	potential	for	toxicity.	

	 Each	of	the	six	compounds	considered	in	this	thesis	produced	concentration-

dependent	effects	at	hSERT.		Brephedrone	was	shown	to	be	the	most	potent	compound	

eliciting	effects	on	the	serotonin	transporter	followed	by	(in	order	of	potency)	

mephedrone,	clephedrone,	flephedrone,	methedrone,	and	methcathinone.		The	Bonano	et	

al.	(2015)	paper	suggested	that	the	larger	the	Taft’s	Steric	E	(ES	value),	the	more	potent	a	

compound	would	be	for	DAT	instead	of	SERT.		In	other	words,	the	ES	value	is	inversely	

related	to	the	amount	of	steric	bulk,	and	the	lower	the	ES	value,	the	more	potent	the	

compound	should	be	at	hSERT.		The	SERT	EC50	values	in	oocytes	calculated	from	the	data	

acquired	for	this	thesis	(Table	4.10)	somewhat	agree	with	the	Bonano	et	al.	paper.		

Methcathinone	has	the	smallest	functional	steric	bulk	of	the	six	compounds	(ES	=	1.24),	

should	be	the	most	selective	at	DAT,	and	clearly	is	the	least	potent	at	SERT	with	a	EC50	of	

15.73.		Methedrone	(4-OCH3	MCAT)	appears	to	be	the	next	least	potent	at	SERT	in	our	data	
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(EC50	=	5.56)	and	this	almost	agrees	with	the	ES	value	(0.69)	where	methedrone	is	the	third	

highest.		Bonano	et	al.	found	methedrone	to	be	an	outlier,	having	the	most	selectivity	at	

SERT.		The	data	here	does	not	agree	with	Bonano	et	al.’s	calculations	of	methedrone,	and	

comes	closer	to	following	the	predictions	made	from	ES	values.		Based	on	these	ES	value	

predictions,	flephedrone	(4-F	MCAT,	ES	=	0.78)	should	be	the	second	least	potent	at	SERT	

behind	methcathinone,	but	our	data	suggest	that	flephedrone	(EC50	=	4.67,)	is	third	least	

potent.		Clephedrone	(4-Cl	MCAT,	ES	=	0.27)	has	the	next	lowest	ES	value,	Bonano	et	al.	

calculated	it	to	be	the	next	highest	in	SERT	selectivity,	and	our	data	(EC50	value	of	1.29	[+/-

0.33])	agree.		Mephedrone	(4-CH3	MCAT,	ES	=	0)	was	found	to	be	the	second	most	potent	

compound	at	SERT	in	both	data	sets	(EC50	=	1.20).		Bonano	et	al.	found	brephedrone	(4-Br	

MCAT)	to	be	the	most	potent	compound	at	SERT,	while	having	the	second	lowest	ES	value	

(0.08).		Our	data	from	oocyte	concentration	curves	agrees	with	the	Bonano	et	al.	paper	in	

that	brephedrone	(EC50	=	0.52)	is	the	most	potent	compound	at	the	hSERT	transporter.		In	

summary,	the	data	collected	for	this	thesis	mostly	agrees	with	Bonano	et	al.	prediction	that	

as	the	substituent’s	ES	value	gets	smaller	the	compound	becomes	more	SERT	selective.	

	 Correlational	statistical	experiments	were	employed	using	the	new	EC50	values	from	

the	concentration-effect	curves	in	oocytes.		First,	the	new	EC50	values	from	oocytes	were	

calculated	with	the	EC50	values	from	synaptosomes	in	Bonano	et	al.	(2014)	and	Baumann	et	

al.	(2012)	(all	values	can	be	found	in	Table	4.14).		This	resulted	in	a	significant	correlation	

between	the	two	sets	of	EC50	values	(p	=	0.039,	r	=	0.83)	suggesting	that	the	concentration	

effect	curve	for	each	compound	is	similar	in	both	xenopus	oocytes	and	synaptosomes,	and	

can	be	seen	in	Figure	4.15.	
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	 Next,	a	correlational	analysis	was	performed	between	EC50	values	from	oocytes	and	

a	measure	of	volume	for	each	4-para	substituted	compound.		These	values	of	volume	in	

cubic	angstroms	were	borrowed	from	Sakloth,	et	al.	2015	and	can	also	be	found	in	Table	

4.14.		The	correlation	between	volume	and	oocyte	EC50	values	is	very	weak	but	statistically	

significant	with	a	p	value	of	0.0026	and	an	r	value	of	-0.56,	shown	in	Figure	4.16.		When	

volume	and	EC50	values	are	plotted,	like	in	Figure	4.16,	it	is	obvious	that	one	point	is	an	

outlier	compared	to	the	others.		That	data	point	is	methedrone	(4-OCH3	MCAT),	with	the	

second	highest	EC50	value	of	5.56	micromoles	and	the	second	lowest	volume	of	153.78	

cubic	angstroms.		Another	correlation	was	performed	without	methedrone’s	data	point	and	

the	results	differed	drastically.		Without	methedrone,	p	=	0.0005	and	r	=	0.992,	and	can	be	

seen	in	Figure	4.17.		The	stark	contrast	between	the	correlations	of	volume	and	EC50	values,	

with	and	without	the	methedrone	data	point,	suggest	that	it	could	be	an	outlier.		A	

correlation	between	volume	and	Taft’s	E	(Figure	4.21)	supports	this	theory	because	

methedrone	appears	to	be	an	outlier	here	as	well.		In	order	to	explore	why	methedrone	

might	be	acting	in	such	a	way,	the	EC50	values	were	next	correlated	with	the	three	

parameters	from	Bonano	et	al.	(2014):	Taft’s	steric	parameter,	electron-withdrawing	

capacity,	and	lipophilicity.	

	 Bonano	et	al.	previously	hypothesized	that	MCAT	analogues	with	para	substituents	

would	demonstrate	selectivity	for	either	DAT	or	SERT,	depending	on	the	substituent	

(Bonano	et	al.,	2015).		In	Bonano	et	al.’s	paper,	the	only	statistically	significant	correlation	

was	found	between	selectivity	at	the	transporters	(or	EC50	value)	and	functional	steric	bulk.		

To	quantify	steric	bulk,	Bonano	et	al.	used	Taft’s	steric	parameter	(ES)	which	is	calculated	

based	on	both	steric	strain	and	steric	hindrance	of	each	compound,	as	well	as	inductive,	



www.manaraa.com

	78	

resonance,	and	field	influences	(Bonano	et	al.,	2015).		ES	values	are	indirectly	related	to	the	

amount	of	functional	steric	bulk.		In	other	words,	the	higher	the	ES	value,	the	lower	the	

functional	steric	bulk	of	the	substituent.		The	calculated	ES	values	can	be	found	in	Table	

4.14.		A	correlation	between	the	ES	values	and	the	EC50	values	produced	an	r	value	of	0.96	

and	a	p	value	of	0.003,	and	can	be	seen	in	Figure	4.18.		This	is	a	strong	correlational	r	value,	

and	a	p	value	less	than	0.05,	indicating	a	statistically	significant	correlation.		It	is	interesting	

that	the	EC50	values	in	oocytes	correlate	well	with	the	experimental	Taft’s	E	value	but	not	

volume,	while	the	EC50	values	from	synaptosomes	correlate	with	both.	

	 The	cause	for	methedrone	(4-OCH3	MCAT)	being	an	outlier	in	the	EC50	versus	

volume	plot	could	potentially	be	caused	by	electronic	factors	of	the	substituent	group.		To	

explore	this	possibility,	a	correlation	was	performed	between	EC50	values	and	the	electron-

withdrawing	capacity	of	each	4-para	substituent	compound.		Methedrone	possesses	the	

lowest	electron-withdrawing	capacity	(EWC	=	-0.27)	and	all	the	electron-withdrawing	

values	can	be	found	in	Table	4.14.		The	correlation	experiment	returned	a	weak	r	value	of					

-0.445	and	a	high	p	value	of	0.377.		These	results,	shown	in	Figure	4.19,	suggest	that	

electron-withdrawing	capacity	is	not	the	cause	of	methedrone’s	aberrant	placement	on	the	

EC50	vs.	volume	plot	and	methedrone’s	strangely	weak	potency	at	the	serotonin	

transporter.	

	 The	relationship	between	the	EC50	value	of	each	compound	and	lipophilicity	was	

correlated	and	the	resulting	values,	r	=	-0.933	and	p	=	0.004,	propose	a	significant	

statistical	relationship	between	the	lipophilcity	and	the	EC50	value	of	each	compound.		

Figure	4.20	illustrates	the	correlation	and	suggests	that	the	liophilicity	of	each	4-para	

substituted	methcathinone	compound	could	influence	the	respective	EC50	values.	
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	 The	EC50	values	obtained	by	Baumann	et	al.	(2012)	in	synaptosomes	correlate	

strongly	with	both	Taft’s	E	(Figure	4.22,	r	=	0.88,	p	=	0.02)	and	volume	(Figure	4.23,	r	=	-

0.92,	p	=	0.008).		The	EC50	values	from	oocytes	correlate	with	EC50	values	from	

synaptosomes,	but	not	with	volume	and	Taft’s	E	signifying	a	difference	modulating	EC50	

values	in	oocytes	that	does	not	exist	in	synaptosomes.		Oocyte	EC50	values	have	been	shown	

to	correlate	well	with	values	of	substituent	length	and	width,	(Figures	4.25,	4.27)	similar	to	

synaptosomes	when	excluding	methedrone.		Thus	the	discrepancies	in	EC50	values	between	

synaptosomes	and	oocytes	could	be	caused	by	a	difference	in	expression,	protein	

packaging,	or	modification	and	previous	experiments	have	shown	differing	EC50	values	in	

Xenopus	oocytes	when	compared	to	values	in	rat	syaptosomes	(Dowd	et	al.	1996).			

	 In	conclusion,	each	of	the	six	4-para	substituted	methcathinone	compounds	elicit	a	

distinct	response	at	the	human	serotonin	transporter.		The	particular	substitution	made	at	

the	4-position	on	the	benzyl	ring	influences	the	overall	potency	at	the	serotonin	

transporter,	and	the	size	of	the	substitution	clearly	is	a	factor.		Substituent	volume	does	not	

correlate	perfectly	though,	as	shown	by	the	outlier	methedrone	(4-OCH3	MCAT).		The	

experimental	measurement	of	Taft’s	E,	which	takes	into	account	volume,	is	more	predictive	

of	methcathinone	analog	efficicay	at	hSERT	and	the	data	suggest	other	factors	are	also	at	

play.		Electron-withdrawing	capacity	was	shown	to	have	no	direct	influence	on	efficacy	and	

EC50	values.		However,	the	lipophilicity	of	each	compound	provided	a	significant	correlation	

to	the	EC50	values	found	from	oocyte	concentration-curves.		These	results	imply	the	general	

rule:	the	larger	the	overall	volume	of	the	compound,	the	more	efficient	that	compound	will	

be	at	the	serotonin	transporter	(compared	to	the	dopamine	transporter),	when	expressed	

in	oocytes.		Outliers	are	possible	due	to	other	factors	including	lipophilicity	(and	excluding	
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steric	bulk	and	electron-withdrawing	capacity)	and	the	results	differ	in	other	assays	such	

as	rat	synaptosome	experiments.		Such	dissimilarities	could	be	due	to	varying	membrane	

lipid	and	protein	compositions	in	the	different	cell	types	or	any	number	of	pre	or	post-

translational	modifications	to	the	transporter.		We	can	conclude	that	measurements	of	

volume,	substituent	size,	and	steric	bulk	are	indirectly	related	to	methcathinone	analogue	

potency	at	the	human	serotonin	transporter,	possibly	modulated	in	part	by	the	compound’s	

lipophilicity	and	other	unknown	factors.	
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